• Title/Summary/Keyword: 준-야기 안테나

Search Result 19, Processing Time 0.025 seconds

Design of Triple-band Triple Dipole Quasi-Yagi Antenna for WLAN and WiMAX Applications (무선 랜과 WiMAX 응용을 위한 삼중 대역 삼중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.29-34
    • /
    • 2022
  • In this paper, the design of a triple dipole quasi-yagi antenna operating in the 2.45 GHz and 5 GHz wireless LAN frequency bands and the 3.5 GHz WiMAX frequency band was studied. The proposed quasi-Yagi antenna consists of three dipoles connected in series with a V-shaped ground plane. The longest half-bow-tie-shaped dipole resonates in the 2.45 GHz band, whereas the medium-length dipole resonates at 3.5 GHz. The shortest dipole resonates in the 5 GHz band. By adjusting the length and width of the dipoles and the spacings between the dipoles, a triple-band directional antenna operating in the 2.45 GHz, 3.5 GHz, and 5 GHz bands are designed, and fabricated on an FR4 substrate with a size of 45 mm × 55 mm. It was confirmed that the fabricated antenna operates in the designed triple bands of 2.32-2.57 GHz, 3.26-3.69 GHz, and 4.50-6.56 GHz for a voltage standing wave ratio less than 2. Gain is maintained above 3 dBi in the three bands.

Broadband 8 dBi Double Dipole Quasi-Yagi Antenna Using 4×2 Meanderline Array Structure (4×2 미앤더라인 배열 구조를 이용한 광대역 8 dBi 이중 다이폴 준-야기 안테나)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.232-237
    • /
    • 2024
  • In this paper, a broadband double dipole quasi-Yagi antenna using a 4×2 meander line array structure for maintaining 8 dBi gain was studied. The 4×2 meanderline array structure consists of a unit cell in the shape of a meanderline conductor, and it was placed above the second dipole antenna of the double dipole quasi-Yagi antenna. A double dipole quasi-Yagi antenna with generally used multiple strip directors was designed on an FR4 substrate with the same size, and the input reflection coefficient and gain characteristics were compared. Comparison results showed that the impedance frequency bandwidth increased by 6.3% compared to when using the multiple strip directors, the frequency bandwidth with a gain of 8 dBi or more increased by 10.1%, and average gain also slightly increased. The frequency band of the fabricated antenna for a voltage standing wave ratio less than 2 was 1.548-2.846 GHz(59.1%), and gain was measured to be more than 8 dBi in the 1.6-2.8 GHz band.

Bandwidth Enhancement of Double-Dipole Quasi-Yagi Antenna Using Modified Microstrip-to-Coplanar Strip line Balun (변형된 마이크로스트립-동일면 스트립 선로 밸런을 이용한 이중 다이폴 준-야기 안테나의 대역폭 향상)

  • Yeo, Junho;Lee, Jong-Ig;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.457-463
    • /
    • 2016
  • In this paper, a method of enhancing the bandwidth of a double-dipole quasi-Yagi antenna (DDQYA) using a modified integrated balun is presented. The modified integrated balun consists of a microstrip (MS) line inserted along the center of a coplanar strip (CPS) line and the end of the MS line is connected to the CPS line through a shorting pin at the feed point. The geometry of the modified integrated balun is adjusted to improve the bandwidth of the DDQYA. In addition, the performance of the proposed balun in a back-to-back configuration is compared with a conventional balun. The proposed antenna with the optimized modified integrated balun is fabricated on an FR4 substrate, and the experiment results show that the antenna has a frequency band of 1.56-3.04 GHz(64.4%) for a VSWR < 2, which shows enhanced bandwidth compared to the DDQYA with the conventional balun.

Gain Enhancement of Double Dipole Quasi-Yagi Antenna Using Meanderline Array Structure (미앤더라인 배열 구조를 이용한 이중 다이폴 준-야기 안테나의 이득 향상)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.447-452
    • /
    • 2023
  • In this paper, gain enhancement of a double dipole quasi-Yagi antenna using a meanderline array structure was studied. A 4×1 meanderline array structure consisting of a meanderline conductor- shaped unit cell is located above the second dipole of the double dipole quasi-Yagi antenna. It was designed to have gain over 7 dBi in the frequency range between 1.70 and 2.70 GHz in order to compare the performance with the case using a conventional strip director. As a result of comparison, the average gain of the double dipole quasi-yagi antenna with the proposed meander line array structure was larger compared to the case with the conventional strip director. A double dipole quasi-Yagi antenna using the proposed meanderline array structure was fabricated on an FR4 substrate and its characteristics were compared with the simulation results. Experiment results show that the frequency band for a VSWR less than 2 was 1.55-2.82 GHz, and the frequency band for gain over 7 dBi was measured to be 1.54-2.83 GHz. The frequency bandwidth with gain over 7 dBi increased, and average gain also slightly increased, compared to the conventional case using a strip director.

Design of Double-Dipole Quasi-Yagi Antenna with 7 dBi gain (7 dBi 이득을 가지는 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.245-252
    • /
    • 2016
  • In this paper, the design of a double-dipole quasi-Yagi antenna (DDQYA) with a gain over 7 dBi at 1.70-2.70 GHz band is studied. The proposed DDQYA consists of two strip dipoles with different lengths and a ground reflector, which are connected trough a coplanar stripline. The length of the second dipole is adjusted to increase the gain in the low frequency band, whereas a rectangular patch director is appended to the DDQYA to enhance the gain in the middle and high frequency band. The effects of the length of the second dipole, and the length and width of the director on the antenna performance are analyzed, and final design parameters to obtain a gain over 7 dBi are obtained. A prototype of the proposed DDQYA is fabricated on an FR4 substrate, and the experimental results show that the antenna has a frequency band of 1.60-2.86 GHz for a VSWR < 2, and measured gain ranges 7.2-7.6 dBi at 1.70-2.70 GHz band.

Design of a Broadband Quasi-Yagi Antenna for UHF Band (UHF 대역 광대역 준-야기 안테나 설계)

  • Yang, Myung-Gyu;Lee, Yun-Joo;Kwon, Jun-Hyoek;Lee, Chang-Kyun;Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.939-940
    • /
    • 2015
  • In this paper, a design method for a quasi-Yagi antenna (QYA) suitable for UHF band is studied. Due to the mutual coupling between a coplanar strip (CPS)-fed planar dipole and a conducting strip director placed close to the dipole, the dipole obtains broadband characteristics. A ground reflector improves gain in the lower frequency band, and the antenna size might be reduced by employing a bent reflector. The balun between the CPS line and the microstrip(MS) line is constructed by connecting the end of MS line and the CPS line through a shorting pin. In addition, a ring-type conductor connects the CPS line and reflector. The effects of various geometrical parameters and balun on the antenna characteristics are examined. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV.

  • PDF

Design of Compact Planar Quasi-Yagi Antenna for DTV Reception (디지털방송 수신용 평면 준-야기 안테나의 소형화 설계)

  • Lee, Jong-Ig;Han, Dae-Hee;Kim, Soo-Min;Kim, Gun-Kyun;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.583-585
    • /
    • 2012
  • In this paper, we introduce a design method for a broadband planar quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) receiving. The coplanar strip line feeding the driver dipole is connected to a microstrip line and is terminated by short circuit. By appending a wide strip-type director at a location close to the driver dipole, a broadband impedance matching and a gain characteristics in a high frequency region are obtained. The gain characteristics in a low frequency region are improved by adding a reflector formed by a truncated ground plane. To reduce the antenna size, the strip-type dipole and reflector are modified to half bowtie (V)-shaped elements. The effects of various parameters on the antenna characteristics are examined. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV. The optimized antenna is fabricated on an FR4 substrate and tested experimentally to verify the results of this study.

  • PDF

Compact Half Bow-tie-type Quasi-Yagi Antenna for Terrestrial DTV Reception (지상파 디지털 방송 수신용 소형 반 보우 타이 형 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho;Park, Jin-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1908-1914
    • /
    • 2013
  • In this paper, we introduce a design method for a broadband planar quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) reception. The coplanar strip line which feeds the driver dipole is connected to a microstrip line and is terminated by short circuit. By appending a wide strip-type rectangular director at a location close to the driver dipole, broadband impedance matching and gain enhancement in a high frequency region are obtained. The gain characteristics in a low frequency region are improved by adding a reflector formed by a truncated ground plane. To reduce the antenna size, the strip-type dipole and reflector are modified to half bow-tie (V)-shaped elements. The effects of various parameters on the antenna characteristics are examined. An antenna, as a design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV. The optimized antenna is fabricated on an FR4 substrate and the experimental results show that the antenna has a good performance such as a frequency band of 450-848 MHz for a VSWR < 2, gain > 4.1 dBi, and front-to-back ratio > 10.4 dB.

Soft-Decision Algorithm with Low Complexity for MIMO Systems Using High-Order Modulations (고차 변조 방식을 사용하는 MIMO 시스템을 위한 낮은 복잡도를 갖는 연판정 알고리즘)

  • Lee, Jaeyoon;Kim, Kyoungtaek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.6
    • /
    • pp.981-989
    • /
    • 2015
  • In a log likelihood ratio(LLR) calculation of the detected symbol, multiple-input multiple-output(MIMO) system applying an optimal or suboptimal algorithm such as a maximum likelihood(ML) detection, sphere decoding(SD), and QR decomposition with M-algorithm Maximum Likelihood Detection(QRM-MLD) suffers from exponential complexity growth with number of spatial streams and modulation order. In this paper, we propose a LLR calculation method with very low complexity in the QRM-MLD based symbol detector for a high order modulation based $N_T{\times}N_R$ MIMO system. It is able to approach bit error rate(BER) performance of full maximum likelihood detector to within 1 dB. We also analyze the BER performance through computer simulation to verify the validity of the proposed method.