• Title/Summary/Keyword: 준 희소 클래스

Search Result 2, Processing Time 0.018 seconds

A Pre-processing Study to Solve the Problem of Rare Class Classification of Network Traffic Data (네트워크 트래픽 데이터의 희소 클래스 분류 문제 해결을 위한 전처리 연구)

  • Ryu, Kyung Joon;Shin, DongIl;Shin, DongKyoo;Park, JeongChan;Kim, JinGoog
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.12
    • /
    • pp.411-418
    • /
    • 2020
  • In the field of information security, IDS(Intrusion Detection System) is normally classified in two different categories: signature-based IDS and anomaly-based IDS. Many studies in anomaly-based IDS have been conducted that analyze network traffic data generated in cyberspace by machine learning algorithms. In this paper, we studied pre-processing methods to overcome performance degradation problems cashed by rare classes. We experimented classification performance of a Machine Learning algorithm by reconstructing data set based on rare classes and semi rare classes. After reconstructing data into three different sets, wrapper and filter feature selection methods are applied continuously. Each data set is regularized by a quantile scaler. Depp neural network model is used for learning and validation. The evaluation results are compared by true positive values and false negative values. We acquired improved classification performances on all of three data sets.

Attention based Feature-Fusion Network for 3D Object Detection (3차원 객체 탐지를 위한 어텐션 기반 특징 융합 네트워크)

  • Sang-Hyun Ryoo;Dae-Yeol Kang;Seung-Jun Hwang;Sung-Jun Park;Joong-Hwan Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.190-196
    • /
    • 2023
  • Recently, following the development of LIDAR technology which can detect distance from the object, the interest for LIDAR based 3D object detection network is getting higher. Previous networks generate inaccurate localization results due to spatial information loss during voxelization and downsampling. In this study, we propose an attention-based convergence method and a camera-LIDAR convergence system to acquire high-level features and high positional accuracy. First, by introducing the attention method into the Voxel-RCNN structure, which is a grid-based 3D object detection network, the multi-scale sparse 3D convolution feature is effectively fused to improve the performance of 3D object detection. Additionally, we propose the late-fusion mechanism for fusing outcomes in 3D object detection network and 2D object detection network to delete false positive. Comparative experiments with existing algorithms are performed using the KITTI data set, which is widely used in the field of autonomous driving. The proposed method showed performance improvement in both 2D object detection on BEV and 3D object detection. In particular, the precision was improved by about 0.54% for the car moderate class compared to Voxel-RCNN.