• Title/Summary/Keyword: 준퇴적동시성 변형구조

Search Result 3, Processing Time 0.016 seconds

On the penecontemporaneous deformation structures of the Sinri area at the mid western boundary of the Jinan Basin (진안분지 서변 중앙부 신리지역의 준퇴적동시성 변형구조)

  • Lee Young-Up
    • The Korean Journal of Petroleum Geology
    • /
    • v.6 no.1_2 s.7
    • /
    • pp.8-19
    • /
    • 1998
  • In the Sinri area located at the mid western boundary of the Jinan basin, the Manduksan Formation which mainly consists of coarse sandstone narrowly intercalated with shale and the alternation of sand and shale and the Dalgil Formation mainly of shale are distributed. It consists of four lithofacies, such as coarse sandstone, interbedded sandstone/shale, shale and volcanic rock lithofacies. All sediments are interpreted to be deposited by turbidity currents and free fallouts in a lacustrine basin. In these rocks many penecontemporaneous defomation structures are observed such as fold and thrust fault at large scale, and swelling, boudin structure, flame structure, load structure, ptygmatic fold and convolute bedding at small scale. All these structures are developed between upper and lower undisturbed sedimentary strata. Two large folds are similar folds, but lower one gradually developed into concentric shape. The swelling structures by convergence of the sediments are observed in the hinge area and the boudin structures are developed in the limb. The thrust faults including minor folds and sandstone lobes show duplex structure with asymmetric and kink fold on and below in front of the detached sandstone layer. Development of the swellings, boudins and lobes indicates the flexbility of the sediments during deformational episodes. The folds and thrust faults rarely contain fractures relative their scales and lithologies. This feature also indicates the retrievability of sediments during deformation. At the flanks of the thrust faults the normal faults are formed contemporaneously. The deformation structures at small scale such as flame structures, load structures, ptygmatic folds and convolute beddings are syndepositional and penecontemporaneous, which show the effects of tectonic movements. All these deformed sedimentary structures of the Sinri area suggest the continuing tectonic movements during and/or after deposition.

  • PDF

Origin and Distribution of Cut and Fill Structures in the Southwestern Margin of Ulleung Basin, East Sea (동해 울릉분지 남서주변부에 발달하는 침식충전구조의 기원 및 분포)

  • Park, Yong Joon;Kang, Nyeon Keon;Yi, Bo Yeon;Yoo, Dong Geun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.39-53
    • /
    • 2015
  • Analysis of multi-channel seismic reflection profiles acquired from the southwestern margin of Ulleung Basin reveals that the cut and fill structures, which show U-shaped or V-shaped morphology, occur on variable size. The cut and fill structure mostly consists of fine-grained sediments on the well data and is characterized by transparent or semitransparent seismic facies on the seismic section. Such cut and fill structures dominantly occur in the syn-compressional megasequence (MSQ3), which was deposited during basin deformation of late Miocene, among the four megasequences of the study area. These cut and fill structures can be divided into three groups based on their size and formation time. The cut and fill structures of Group I were formed when Dolgorae structure was active, and occurred on a small scale. The cut and fill structures of group II were formed when both Dolgorae structure and Gorae V structure were active, and the number and size of those increased compared with group I. The cut and fill structures of group III were formed when Dolgorae structure was weaken gradually but Gorae V structure kept active, and the number and size of those decreased in comparison with group II. Consequently the cut and fill structures in the southwestern margin of Ulleung basin are interpreted as submarine canyon based on spatial distribution, size and fill sediment. They were controlled by the tectonic movement in response to basin closure and tectonic-induced sediment supply variation.

A Report on Gneiss Dome in the Hongseong Area, Southwestern Margin of the Gyeonggi Massif (경기육괴 남서 연변부 홍성지역에 발달하는 편마암 돔에 대한 보고)

  • Park, Seung-Ik;Kim, Sung Won
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.315-323
    • /
    • 2016
  • This study reports a gneiss dome in the Hongseong area, southwestern margin of the Gyeonggi massif. This gneiss dome, named here as 'Oseosan dome' because it is located around the Oseosan, the highest peak along the western coastal area, is composed mainly of the Neoproterozoic to Paleozoic ortho- and paragneiss, mafic metavolcanic rock, and metadolerite. Migmatization affected these rock units, in which leucocratic(granitic) materials derived from anatexis frequently occur as patch and vein parallel to or cutting through internal foliation. The Oseosan dome shows overall concentric geometry and outward-dipping internal foliation, but also partly complicatedly changeable or inward-dipping foliation. Taking available petrological and geochronological data into account, the Oseosan dome is interpreted to be exhumed quickly into the upper crustal level during the Late Triassic, accompanied in part with anatexis and granite intrusion. In addition, extensional shear zone intruded by the Late Triassic synkinematic granite and sedimentary basin have been reported around the Oseosan dome. These evidences possibly suggest that the Oseosan dome formed in closely associated with the Late Triassic extensional movement and diapiric flow. Alternatively, 1) thrust- or reverse fault-related doming or 2) interference between independent folds during structural inversion of the Late Traissic to Middle Jurassic sedimentary basin can be also considered as dome-forming process. However, considering the northern limb of the Oseosan dome, cutting by the Late Traissic granite, and the southern limb, cutting by contractional fault reactivated after the Middle Jurassic, it is likely that the domal structure formed during or prior to the Late Triassic.