• Title/Summary/Keyword: 준천정위성시스템

Search Result 4, Processing Time 0.02 seconds

A Study on the Orbits and the Ground-based Optical Tracking of a Future Korean Navigation Satellite System (미래 한국형 위성항법시스템의 궤도와 지상기반 광학추적에 대한 연구)

  • Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Choi, Jin
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.121-129
    • /
    • 2012
  • Any development plan of a Korean space-based navigational system has been neither designed nor introduced yet. However, the demand for the development of a domestic regional satellite navigation system can be originated from the outside of market. The growing dependency on satellite navigational systems in Korea eventually requires the retainment and the operation of a domestic navigational satellite system. There is not many choices on the orbit designs and the system design concepts of a regional augmented navigation satellite system or a regional navigation satellite system for the service on the vicinity of the Korean peninsular. Space situational awareness (SSA) has been a rising issue for both national security and more realistic space business in Korea. Also SSA related technologies in Korea is a newly inaugurated area and is necessary to generate a navigation messages and maintain a future Korean navigation satellite system. In this study, the availability of Japanese Quasi Zenith Satellite System (QZSS) expected to be deployed definitely sooner than Korean counter-part is analyzed. The availability of the similar configured system over Korea is investigated with assumed QZSS type orbit. Also, feasible configuration of orbits for domestic navigation satellite system is suggested. And the observability of a ground-based optical tracking system as a secondary tracking capability is analyzed.

Study of Quasi Zenith Satellite Orbit and Navigation Messages (준천정 위성 궤도 특성 및 항법정보 연구)

  • Kim, Jeong-Rae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • One of the key elements for developing GNSS (Global Navigation Satellite Systems) is the comprehensive analysis of GNSS satellite orbit including the capabilities to generate precision navigation message. The orbit characteristics of Japan's own GNSS system, called QZSS (Quasi Zenith Satellite System) is analyzed and its navigation message, which includes orbit elements and correction terms, is investigated. QZSS-type orbit simulations were performed using a precision orbit integrator in order to analyze the effect of perturbation forces, e.g. gravity, Moon, Sun, etc., on the orbit variation. A preliminary algorithm for creating orbit element corrections was developed and its accuracy is evaluated with the simulation data.

  • PDF

Long-term Evaluation of QZSS SLAS Correction Accuracy (QZSS SLAS 보정정보 정확도의 장기간 성능분석)

  • Yongrae Kim;Heeseob Kim;Jeongrae Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.4
    • /
    • pp.457-466
    • /
    • 2024
  • The quasi-zenith satellite system (QZSS) provides sub-meter level augmentation service (SLAS) to improve the positioning accuracy of single-frequency GPS L1 receiver users. The SLAS correction consists of differential GPS information (DGPS) and the corrections are transmitted via quasi-zenith satellites (QZS). The DGPS correction reduces the effect of pseudo-range errors due to satellite orbit, clock and atmospheric delay errors. Thirteen SLAS reference stations in Japan generate the correction data. The performance of the DGPS correction depends on several factors, including location of reference stations, distance between the user and reference station, etc. The long-term performance of the SLAS corrections was evaluated by processing data over a five-year period (2019-2023). The SLAS corrections were applied to GPS observations at the IGS stations in Japan and the positioning accuracy was evaluated. The correlation with the ionospheric activity and the latitude of the SLAS reference stations was also evaluated.

Regional Ionosphere Modeling using GPS, Galileo, and QZSS (GPS, Galileo, QZSS를 이용한 지역 전리층 모델링)

  • Byung-Kyu Choi;Dong-Hyo Sohn;Junseok Hong;Jong-Kyun Chung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.159-165
    • /
    • 2024
  • The Global Navigation Satellite System (GNSS) has been used as a tool to accurately extract the Total Electron Content (TEC) in the ionosphere. The multi-GNSS (GPS, GLONASS, BeiDou, Galileo, and QZSS) constellations bring new opportunities for ionospheric research. In this study, we develop a regional ionospheric TEC model using GPS, Galileo, and QZSS measurements. To develop an ionospheric model covering the Asia-Oceania region, we select 13 International GNSS Service (IGS) stations. The ionospheric model applies the spherical harmonic expansion method and has a spatial resolution of 2.5°×2.5° and a temporal resolution of one hour. GPS TEC, Galileo TEC, and QZSS TEC are investigated from January 1 to January 31, 2024. Different TEC values are in good agreement with each other. In addition, we compare the QZSS(J07) TEC and the Center for Orbit Determination in Europe (CODE) Global Ionosphere Map (GIM) TEC. The results show that the QZSS TEC estimated in the study coincides closely with the CODE GIM TEC.