• 제목/요약/키워드: 준지도학습

검색결과 69건 처리시간 0.024초

준지도 학습 기반의 자동 문서 범주화 (Automatic Text Categorization based on Semi-Supervised Learning)

  • 고영중;서정연
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권5호
    • /
    • pp.325-334
    • /
    • 2008
  • 자동 문서 범주화란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 할당하는 작업이다. 자동 문서 범주화에 관한 기존의 연구들은 지도 학습 기반으로서, 보통 수작업에 의해 범주가 할당된 대량의 학습 문서를 이용하여 범주화 작업을 학습한다. 그러나, 이러한 방법의 문제점은 대량의 학습 문서를 구축하기가 어렵다는 것이다. 즉, 학습 문서 생성을 위해 문서를 수집하는 것은 쉬우나, 수집된 문서에 범주를 할당하는 것은 매우 어렵고 시간이 많이 소요되는 작업이라는 것이다. 본 논문에서는 이러한 문제점을 해결하기 위해서, 준지도 학습 기반의 자동 문서 범주화 기법을 제안한다. 제안된 기법은 범주가 할당되지 않은 말뭉치와 각 범주의 핵심어만을 사용한다. 각 범주의 핵심어로부터 문맥간의 유사도 측정 기법을 이용한 부스트래핑(bootstrapping) 기법을 통하여 범주가 할당된 학습 문서를 자동으로 생성하고, 이를 이용하여 학습하고 문서 범주화 작업을 수행한다. 제안된 기법은 학습 문서 생성 작업과 대량의 학습 문서 없이 적은 비용으로 문서 범주화를 수행하고자 하는 영역에서 유용하게 사용될 수 있을 것이다.

그래프 기반 준지도 학습에서 빠른 낮은 계수 표현 기반 그래프 구축 (Graph Construction Based on Fast Low-Rank Representation in Graph-Based Semi-Supervised Learning)

  • 오병화;양지훈
    • 정보과학회 논문지
    • /
    • 제45권1호
    • /
    • pp.15-21
    • /
    • 2018
  • 낮은 계수 표현(Low-Rank Representation, LRR) 기반 방법은 얼굴 클러스터링, 객체 검출 등의 여러 실제 응용에 널리 사용되고 있다. 이 방법은 그래프 기반 준지도 학습에서 그래프 구축에 사용할 경우 높은 예측 정확도를 확보할 수 있어 많이 사용된다. 그러나 LRR 문제를 해결하기 위해서는 알고리즘의 매 반복마다 데이터 수 크기의 정방행렬에 대해 특이값 분해를 수행하여야 하므로 계산 비효율적이다. 이를 해결하기 위해 속도를 향상시킨 발전된 LRR 방법을 제안한다. 이는 최근 발표된 Fast LRR(FaLRR)을 기반으로 하며, FaLRR이 속도는 빠르지만 실제로 분류 문제에서 성능이 낮은 것을 해결하기 위해 기반 최적화 목표에 추가 제약 조건을 도입하고 이를 최적화하는 방법을 제안한다. 실험을 통하여 제안 방법은 LRR보다 더 좋은 해를 빠르게 찾아냄을 확인할 수 있다. 또한, 동일한 해를 도출하는 방법을 찾아내기는 어렵지만 최소화하는 목표가 추가될 경우 더 좋은 결과를 나타내는 Fast MLRR(FaMLRR)을 제안한다.

광주광역시의 AI 특화분야를 위한 실용적인 접근 사례 제시 (Presenting Practical Approaches for AI-specialized Fields in Gwangju Metro-city)

  • 차병래;차윤석;박선;신병춘;김종원
    • 스마트미디어저널
    • /
    • 제10권1호
    • /
    • pp.55-62
    • /
    • 2021
  • 광주광역시의 3대 주력산업인 자동차 산업, 에너지 산업, 그리고 AI/헬스케어 산업 등에 응용 가능한 AI 활용 사례로 준지도 학습, 전이 학습, 그리고 연합 학습의 머신러닝을 적용하며, 더불어 주력산업을 위한 AI 서비스를 위한 ML 전략을 정립하였다. AI 서비스의 ML 전략을 기반으로 실용적 접근 사례들을 제시하고자 하며, 준지도 학습의 접근 사례는 자동차 영상 인식 기술에 활용하며, 전이 학습의 접근 사례는 헬스케어 분야의 당뇨병성 망막병증 검출에 활용하고자 하며, 마지막으로 연합 학습의 접근 사례는 전력 수요 예측에 활용하고자 한다. 이러한 접근 사례들을 싱글보드 Raspberry Pi, Jaetson Nano, Intel i-7 등의 하드웨어를 기반으로 성능 테스트를 진행함과 동시에 실용적인 접근 사례들의 유효성을 검증하였다.

준지도 학습을 활용한 사용자 기반 소형 어선 충돌 경보 분류모델에대한 연구 (A Study on the User-Based Small Fishing Boat Collision Alarm Classification Model Using Semi-supervised Learning)

  • 석호준;심승;우정훈;조준래;정재룡;조득재;백종화
    • 한국항해항만학회지
    • /
    • 제47권6호
    • /
    • pp.358-366
    • /
    • 2023
  • 본 연구는 해양수산부의 '지능형 해상교통정보시스템' 서비스 중 '사고취약선박 모니터링 서비스'의 선박 충돌 경보를 개선하기 위한 것으로, 현재의 선박 충돌 경보는 대형 선박 위주의 데이터와 그 운항자에 기반한 설문조사 레이블을 가지고 지도 학습(SL)한 모델을 사용하고 있다. 이로 인해, 소형선박 데이터 및 운항자의 의견이 현재 충돌 지도학습 모델에 반영되지 않아, 소형선박 운항자가 느끼는 체감보다 먼 거리에서 경보가 제공되기 때문에 그 효과가 미비하다. 또한, 지도학습(SL) 방법은 레이블링 된 다수의 데이터가 필요하지만, 레이블링 과정에서 많은 자원과 시간이 필요하다. 본 논문은 이러한 한계를 극복하기 위해 준지도학습(SSL)의 알고리즘인 Label Propagation과 TabNet을 사용하여 레이블이 결정되지 않은 데이터를 활용하여 소형선박을 위한 충돌 경보의 분류 모델을 연구하였다. 충돌 경보의 분류 모델을 활용하여 소형선박 운항자를 대상으로 실해역 시험을 수행한 결과 운항자의 만족도가 증가하는 결과를 확인하였다.

최소제곱 서포터벡터기계 형태의 준지도분류 (Semi-supervised classification with LS-SVM formulation)

  • 석경하
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권3호
    • /
    • pp.461-470
    • /
    • 2010
  • 라벨 있는 자료가 분류규칙을 만들 만큼 충분하지 않거나, 라벨 없는 자료가 분류규칙을 만드는데 도움을 줄 수 있는 경우에는 라벨 있는 자료와 라벨 없는 자료를 모두 사용하는 준지도분류가 더 효과적이다. 준지도분류 중 그래프기반 다양체정칙법이 개발되어 최근에 많은 연구가 이루어지고 있다. 본 연구에서는 통계적학습에서 좋은 성능을 보이는 최소제곱 서포터벡터기계를 준지도분류에 적용시키는 방법을 제안한다. 모의실험을 통해 제안된 방법이 라벨 없는 자료를 잘 활용하는 것을 볼 수 있었다.

강건한 객체탐지 구축을 위해 Pseudo Labeling 을 활용한 Active Learning (Active Learning with Pseudo Labeling for Robust Object Detection)

  • 김채윤;이상민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.712-715
    • /
    • 2023
  • 딥러닝 기술의 발전은 고품질의 대규모 데이터에 크게 의존한다. 그러나, 데이터의 품질과 일관성을 유지하는 것은 상당한 비용과 시간이 소요된다. 이러한 문제를 해결하기 위해 최근 연구에서 최소한의 비용으로 최대의 성능을 추구하는 액티브 러닝(active learning) 기법이 주목받고 있는데, 액티브 러닝은 모델 관점에서 불확실성(uncertainty)이 높은 데이터들을 샘플링 하는데 중점을 둔다. 하지만, 레이블 생성에 있어서 여전히 많은 시간적, 자원적 비용이 불가피한 점을 고려할 때 보완이 불가피 하다. 본 논문에서는 의사-라벨링(pseudo labeling)을 활용한 준지도학습(semi-supervised learning) 방식과 학습 손실을 동시에 사용하여 모델의 불확실성(uncertainty)을 측정하는 방법론을 제안한다. 제안 방식은 레이블의 신뢰도(confidence)와 학습 손실의 최적화를 통해 비용 효율적인 데이터 레이블 생성 방식을 제안한다. 특히, 레이블 데이터의 품질(quality) 및 일관성(consistency) 측면에서 딥러닝 모델의 정확도 성능을 높임과 동시에 적은 데이터만으로도 효과적인 학습이 가능할 수 있는 메커니즘을 제안한다.

준지도학습 방법을 이용한 한국어 서답형 문항 자동채점 시스템 (Korean Automated Scoring System for Supply-Type Items using Semi-Supervised Learning)

  • 천민아;서형원;김재훈;노은희;성경희;임은영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.112-116
    • /
    • 2014
  • 서답형 문항은 학생들의 종합적인 사고능력을 판단하는데 매우 유용하지만 채점할 때, 시간과 비용이 매우 많이 소요되고 채점자의 공정성을 확보해야 하는 어려움이 있다. 이러한 문제를 개선하기 위해 본 논문에서는 서답형 문항에 대한 자동채점 시스템을 제안한다. 본 논문에서 제안하는 시스템은 크게 언어 처리 단계와 채점 단계로 나뉜다. 첫 번째로 언어 처리 단계에서는 형태소 분석과 같은 한국어 정보처리 시스템을 이용하여 학생들의 답안을 분석한다. 두 번째로 채점 단계를 진행하는데 이 단계는 아래와 같은 순서로 진행된다. 1) 첫 번째 단계에서 분석 결과가 완전히 일치하는 답안들을 하나의 유형으로 간주하여 각 유형에 속한 답안의 빈도수가 높은 순서대로 정렬하여 인간 채점자가 고빈도 학생 답안을 수동으로 채점한다. 2) 현재까지 채점된 결과와 모범답안을 학습말뭉치로 간주하여 자질 추출 및 자질 가중치 학습을 수행한다. 3) 2)의 학습 결과를 토대로 미채점 답안들을 군집화하여 분류한다. 4) 분류된 결과 중에서 신뢰성이 높은 채점 답안에 대해서 인간 채점자가 확인하고 학습말뭉치에 추가한다. 5) 이와 같은 방법으로 미채점 답안이 존재하지 않을 때까지 반복한다. 제안된 시스템을 평가하기 위해서 2013년 학업성취도 평가의 사회(중3) 및 국어(고2) 과목의 서답형 문항을 사용하였다. 각 과목에서 1000개의 학생 답안을 추출하여 채점시간과 정확률을 평가하였다. 채점시간을 전체적으로 약 80% 이상 줄일 수 있었고 채점 정확률은 사회 및 국어 과목에 대해 각각 98.7%와 97.2%로 나타났다. 앞으로 자동 채점 시스템의 성능을 개선하고 인간 채점자의 집중도를 높일 수 있도록 인터페이스를 개선한다면 국가수준의 대단위 평가에 충분히 활용할 수 있을 것으로 생각한다.

  • PDF

선별적인 임계값 선택을 이용한 준지도 학습의 SAR 분류 기술 (Semi-Supervised SAR Image Classification via Adaptive Threshold Selection)

  • 도재준;유민정;이재석;문효이;김선옥
    • 한국군사과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.319-328
    • /
    • 2024
  • Semi-supervised learning is a good way to train a classification model using a small number of labeled and large number of unlabeled data. We applied semi-supervised learning to a synthetic aperture radar(SAR) image classification model with a limited number of datasets that are difficult to create. To address the previous difficulties, semi-supervised learning uses a model trained with a small amount of labeled data to generate and learn pseudo labels. Besides, a lot of number of papers use a single fixed threshold to create pseudo labels. In this paper, we present a semi-supervised synthetic aperture radar(SAR) image classification method that applies different thresholds for each class instead of all classes sharing a fixed threshold to improve SAR classification performance with a small number of labeled datasets.

준지도 커널능형회귀모형에 관한 연구 (A study on semi-supervised kernel ridge regression estimation)

  • 석경하
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권2호
    • /
    • pp.341-353
    • /
    • 2013
  • 데이터마이닝과 기계학습의 응용분야에서는 라벨 없는 자료를 이용하는 연구가 많이 진행되고 있다. 이러한 연구는 분류문제에 집중되었다가 최근에 회귀분석문제로 관심이 모아지고 있다. 본 연구에서는 커널능형회귀모형 형태의 준지도 회귀분석 방법을 제시한다. 제안된 방법은 기존의 전환적 방법과는 달리 라벨 없는 자료의 라벨을 추정하는 과정을 필요로 하지 않기 때문에 선택해야 할 모수의 수도 적고, 계산과정도 단순할 뿐 아니라 일반화에 강점이 있다. 모의실험과 실제 자료 분석을 통해 제안된 방법이 라벨 없는 자료를 잘 활용하여 라벨 있는 자료만 이용하는 방법보다 더 우수한 추정을 하는 것을 볼 수 있었다.

그래프 기반 준지도 학습 방법을 이용한 특정분야 감성사전 구축 (The Construction of a Domain-Specific Sentiment Dictionary Using Graph-based Semi-supervised Learning Method)

  • 김정호;오연주;채수환
    • 감성과학
    • /
    • 제18권1호
    • /
    • pp.103-110
    • /
    • 2015
  • 감성어휘는 텍스트로 감성을 표현하거나, 반대로 텍스트로부터 감성을 인식하기 위한 특징으로써 감성분류 연구에 필수요소이다. 본 연구는 감성어휘의 집합인 감성사전을 자동으로 구축하는 그래프 기반 준지도 학습 방법을 제안한다. 특히 감성어휘가 사용되어지는 분야에 따라 그 감성이 변하는 중의성 문제를 고려하여 분야 별 감성사전을 구축하고자 한다. 제안하는 방법은 어휘와 어휘들 간의 밀접도를 토대로 그래프를 구성하고, 사전에 학습 된 일부 소량의 감성어휘들의 감성을 구성된 그래프 전체에 전파하는 방식으로 모든 어휘의 감성을 추론한다. 감성어휘는 대표적으로 감성단어와 감성구문이 있으며, 본 연구에서는 이들 각각에 대한 그래프를 구성하고 감성을 추론하여 전체 감성사전을 구축하였다. 제안하는 방법의 성능을 검증하기 위해 영화평 분야의 감성사전을 구축하고, 이를 이용한 영화평 감성분류 실험을 수행하였다. 그 결과 기존 범용 감성사전의 어휘들을 이용한 감성분류보다 더 높은 분류 성능을 확인하였다.