• Title/Summary/Keyword: 주행속도 프로파일

Search Result 17, Processing Time 0.038 seconds

An Observational Study on the Driver Behaviours at Long Tangent Sections Followed by Sharp Horizontal Curve (긴 직선-곡선 연결선형에서 운전자 주행행태에 관한 현장조사 연구)

  • Kim, Yong-Seok;Cho, Won-Bum
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.139-146
    • /
    • 2004
  • Road design should be conformed to the expectancy of drivers. The alignment such as long tangent followed by the sharp horizontal curve should be avoided for the road design consistency. Currently, operating speed profile model is generally used to check the consistency of the successive road alignments. In this model, the hypothesis about the drivers' behaviour on the long tangent followed by the sharp horizontal curve is also included. This study compares the hypothesized drivers' behaviour in the existing operating speed profile model with the actual drivers' behaviour observed at the two lane rural roads. In addition to this, comparison between the acceleration for the vehicles approaching and departing horizontal curves suggested by the foreign research and the value observed at this study was made, From this study, it was concluded that the hypothesis in the existing model was well representing the actual drivers' behaviour. The deceleration for vehicles approaching the horizontal curves was ranged $0.39{\sim}1.06m/s^2$ with the average of $0.66m/s^2$. The average acceleration for the vehicles departing horizontal curves was $0.22m/s^2$.

Development of Operating Speed Prediction Models Reflecting Alignment Characteristics of the Upstream Road Sections at Four-Lane Rural Uninterrupted Flow Facility (상류부 선형특성을 반영한 지방부 왕복 4차로 연속류 도로의 주행속도 예측모형 개발)

  • Jo, Won-Beom;Kim, Yong-Seok;Choe, Jae-Seong;Kim, Sang-Yeop;Kim, Jin-Guk
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.5
    • /
    • pp.141-153
    • /
    • 2010
  • The study is about the development of operating speed prediction models aimed for an evaluation of design consistency of four lane rural roads. The main differences of this study relative to previous research are the method of data collection and classification of road alignments. The previous studies collected speed data at several points in the horizontal curve and approaching tangent. This method of collection is based on the assumption that acceleration and deceleration only occurs at horizontal tangents and the speed is kept constant at horizontal curves. However, this assumption leads to an unreliable speed estimation, so drivers' behavior is not well represented. Contrary to the previous approach, speed data were collected with one and data analysis using a speed profile is made for data selection before building final models. A total of six speed prediction models were made according to the combination of horizontal and vertical alignments. The study predicts that the speed data analysis and selection for model building employed in this study can improve the prediction accuracy of models and be useful to analyze drivers' speed behavior in a more detailed way. Furthermore, it is expected that the operating speed prediction models can help complement the current design-speed-based guidelines, so more benefits to drivers as real road users, rather than engineers or decision makers, can be achieved.

A Study on the Noise Characteristics of Linear Motor by Improved Velocity Profile (개선된 속도 프로파일에 의한 선형전동기 소음 특성에 관한 연구)

  • Jeon, Jin-Yong;Oh, Joon-Tae;Kim, Gyu-Sik
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.595-597
    • /
    • 2008
  • 자동반송 장비의 주행축에 적용되는 횡자속 선형전동기는 위치제어를 목적으로 한다. 위치제어는 자동 반송 장비가 최소구동시간에 최대의 생산을 할 수 있도록 성능이 우수한 구동프로파일을 사용하게 되는데, 어떤 종류의 구동 프로파일을 적용하느냐에 따라 시스템 전체의 응답 속도는 물론이고 진동과 소음을 최소화하여 전체 시스템의 성능을 좌우하게 된다. 일반적으로 사용되는 사다리꼴 속도 프로파일은 변화가 일정한 가감속 전류를 필요로 하고, 전체 구동시간이 짧아 간단한 시스템에 널리 사용되고 있지만, 가속의 끝점과 감속 구간의 시작점에서 급격한 속도 변화에 따른 져크(Jerk)가 발생하여 기구부에 충격이 가해지며, 이로 인한 진동과 소음을 유발해 순간적으로 큰 동적 에러를 발생시킨다. 따라서, 본 연구에서는 부드러운 속도 프로파일을 가지며 운동의 시작점과 끝점에서 '0'의 가속과 져크를 가지는 고차원의 구동 프로파일을 제시하고 횡자속 선형전동기에 적용하여 소음 특성을 분석하였다.

  • PDF

Development of Optimized Driving Model for decreasing Fuel Consumption in the Longitudinal Highway Section (고속도로 종단지형을 고려한 연료 효율적 최적주행전략 모형 개발)

  • Choi, Ji-eun;Bae, Sang-hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.14-20
    • /
    • 2015
  • The Korea ministry of land, infrastructure and transport set the goal of cutting greenhouse gas emissions from the transport sector by 34.3% relative to the business as usual scenario by 2020. In order to achieve this goal, support is being given to education and information regarding eco-driving. As a practical measure, however, a vehicle control strategy for decreasing fuel consumptions and emissions is necessary. Therefore, this paper presents an optimized driving model in order to decrease fuel consumption. Scenarios were established by driving mode. The speed profile for each scenario applied to Comprehensive Modal Emission Model and then each fuel consumption was estimated. Scenarios and speed variation with the least fuel consumption were derived by comparing the fuel consumptions of scenarios. The optimized driving model was developed by the derived the results. The speed profiles of general driver were collected by field test. The speed profile of the developed model and the speed profile of general driver were compared and then fuel consumptions for each speed profile were analyzed. The fuel consumptions for optimized driving were decreased by an average of 11.8%.

A Fuel Economy Improvement Method using GPS data in Highway (고속도로에서 GPS데이터를 이용한 연비 향상 방안)

  • Choi, Seong-Cheol;Lee, Won-Ho;Moon, Byung-Koo;Kim, Young-Il;Han, Young-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.537-539
    • /
    • 2011
  • 최근의 차량 연비는 엔진, 파워트레인 등 차량의 구성품들을 성능 개선하여 많이 향상 되었으나 연비 측정은 현재도 주어진 모드(LA-4, FTP-75 등)에서 컴퓨터 모의시험 및 다이나모에서 수행한다. 본 논문에서는 차량에 미리 장착된 지리정보데이터와 현재 주행하면서 수신되는 GPS 데이터를 이용하여 약 213Km 영동고속도로를 주행하면서 실제 도로의 연비 향상 방안을 도출한다. 지리정보데이터와 주행하면서 수신한 GPS 데이터 중에서 거리와 고도 데이터를 추출하여 각 구간의 경사도, 주행저항을 계산, 연비향상 알고리즘에 따른 속도 프로파일을 영동고속도로 전 구간에 대해서 완성하고 이 속도 프로파일로 컴퓨터를 이용한 AVL사의 CRUISE 프로그램으로 모의 주행하여 연비를 산출하고 연비 향상 방안을 제안한다.

  • PDF

A Study on the Installation of the Automated Speed Enforcement Camera for the Effectiveness (자동 과속단속시스템의 효과 증진을 위한 설치 방안 연구)

  • Kim, Yong-Seok;Cho, Won-Bum
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.5 s.83
    • /
    • pp.35-45
    • /
    • 2005
  • The speed enforcement camera has been regarded as one of the most important safety countermeasures. Drivers decelerate in front of the speed enforcement camera and gain speed up after passing the camera. So there is a strong need to develop the method how to place the camera to overcome this problem. This study applied the concept of design consistency to the installation of the camera, so speed difference along the road sections should be controlled within the predetermined boundary. Specially, this study also regarded camera as the one of the elements of the road alignments which can change the speed of drivers abruptly, and suggested the way to put this concept into the selection of the placement of the camera.

Development of a Fuel-Efficient Driving Method based on Slope and Length of Uphill Freeway Section (고속도로 오르막 구간의 경사도와 길이에 따른 연료 효율적 주행방법 개발)

  • Choi, Ji-Eun;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.77-84
    • /
    • 2015
  • In 2011, greenhouse gas emissions of transport sector were 85.04 million $tonCO_2eq$ and road emissions accounted for 95% of total emissions in the transport sector. There are few innovative technologies to reduce greenhouse gas emissions aside from eco-driving education and public relation program. Therefore, this paper focused on analyzing optimal acceleration by certain road grades and suggested fuel-efficient driving method for various uphill sections. Scenarios were established by driving modes. Speed profiles were generated by scenarios and speed variations. Each speed profile applied to Comprehensive Modal Emission Model and then each fuel consumption was estimated. Driving mode and speed variation that minimized fuel consumption were driven according to grade percent and uphill distance. When driving in the eco-friendly mode of the driving and speed variation, reduction rate of fuel consumption was evaluated by comparison between eco-driving and cruise control mode. When a vehicle drove under eco-driving mode at 100kph, 90kph and 80kph on uphill road, fuel consumptions were reduced by 33.9%, 30.8% and 5.3%, respectively.

Design of S-Shaped Path and Velocity Profile of Moving Stage Using Three Point Locations (3 점을 이용한 이동 무대의 S 곡선 경로 설계)

  • Jung, Kwang-Oh;Oh, Se-Kyu;Kim, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.67-76
    • /
    • 2011
  • An exact curved path has to be fixed and velocity profile for travelling on the curved path is required by a moving stage. In this study, we decide the curved path on the basis of the information on three point locations. The path of the moving stage is traced by simulating the designed curve path and the velocity profile, and the results are compared with the given three points to determine how closely the moving stage follows the given path. Further, we propose a method to calibrate a curved path and velocity profile. The proposed moving paths were evaluated by performing experiments. Finally, the designed curved path and the actual path were compared.

Development of a Fuel-Efficient Driving Strategy in Horizontal Curve Section (평면곡선부 구간에서의 연료효율적 주행전략 개발)

  • Jeong, Yangrok;Bae, Sanghoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.77-84
    • /
    • 2016
  • In 2012, total GHG emissions in transport sector reached 88 Million ton CO2eq. The emissions generated in the road accounted for 94% of the transport sector. Currently, there are many efforts to operate an education and campaign for eco-driving. However study for eco-friendly vehicle control considering road alignment is limited. Therefore, the purpose of this study is to address fuel-efficient driving strategy in horizontal curve section. To fulfill the goal, designed ideal freeway horizontal curve road follows regulations about road structure. And safety speed is calculated for considering vehicle's safety on horizontal curve road. Authors composed the acceleration and deceleration scenario for each horizontal curve section and generated the speed profiles that are limited by the safety speed. Speed profiles are converted into force that horizontal curve affect to fuel consumption. Then, we calculated fuel consumption using Comprehensive Modal Emission Model. Then, we developed eco-driving strategy by selecting most fuel-efficient scenario. To validate this strategy, we selected study site and compared fuel consumption for eco and manual driving. As the result, fuel consumption when driver used eco-driving was lessened by 20.73% than that of manual driving.

Eco-driving Method at Highway including Grade using GPS Altitude data (GPS 고도 데이터를 이용한 경사가 있는 고속국도에서 에코드라이빙 방안)

  • Choi, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.19-25
    • /
    • 2011
  • A vehicle fuel economy is very important issue in view of fuel cost and environmental regulation. The technology development for the fuel economy improvement improved the engine, power train and many components of vehicle. So, the fuel economy is much improved, but up to now the measurement of it tests the given mode(LA-4, FTP-75, etc) within computer simulation program and engine dynamo. In this paper, to deduct the method of its improvement of real road, the test vehicle ran 213Km Youngdong real highway using 3 different algorithms in computer simulation. For this, I extracted the distance and altitude data from received GPS data and calculated the grade angle, road load and accomplished the velocity profiles according to algorithms in all 213Km distance. The vehicle runs in computer with AVL Cruise simulation program using velocity profile. I calculate the fuel economy using AVL Cruise simulation result and propose the Eco-driving method of them.