• Title/Summary/Keyword: 주파수 오프셋

Search Result 212, Processing Time 0.015 seconds

Design of 77 GHz Automotive Radar System (77 GHz 차량용 레이더 시스템 설계)

  • Nam, Hyeong-Ki;Kang, Hyun-Sang;Song, Ui-Jong;Cui, Chenglin;Kim, Seong-Kyun;Nam, Sang-Wook;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.936-943
    • /
    • 2013
  • This work presents the design and measured results of the single channel automotive radar system for 76.5~77 GHz long range FMCW radar applications. The transmitter uses a commercial GaAs monolithic microwave integrated circuit(MMIC) and the receiver uses the down converter designed using 65 nm CMOS process. The output power of the transmitter is 10 dBm. The down converter chip can operate at low LO power as -8 dBm which is easily supplied from the transmitter output using a coupled line coupler. All MMICs are mounted on an aluminum jig which embeds the WR-10 waveguide. A microstrip to waveguide transition is designed to feed the embedded waveguide and finally high gain horn antennas. The overall size of the fabricated radar system is $80mm{\times}61mm{\times}21mm$. The radar system achieved an output power of 10 dBm, phase noise of -94 dBc/Hz at 1 MHz offset and a conversion gain of 12 dB.

Design for Minimizing Transmission Loss of Broadband Right-Angle Coaxial-to-Microstrip Transition (광대역 동축-마이크로스트립 수직 트랜지션의 전송 손실 저감 설계)

  • Kim, Sei-Yoon;Roh, Jin-Eep;Chung, Ji-Young;Ahn, Bierng-Chearl;You, Young-Gap
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1040-1049
    • /
    • 2006
  • A design method for minimizing transmission loss of a broadband right-angle transition from a coaxial cable to a microstrip line is presented. The right-angle transition has been widely used where printed circuit applications need to be fed from behind the ground plane using coaxial line. To obtain the minimized transmission loss over the whole operating frequency range of the transition, design parameters such as ground aperture and probe diameters, ground aperture offset, and stub length are optimized using a commercial electromagnetic simulation software. Results are presented for the optimum right-angle transition from an SMA connector to a microstrip line on common reinforced 0.787 mm thick PTFE substrates. Measurements of a fabricated transition show that reflection coefficient is less than -22 dB and insertion loss is less than 0.45 dB over $0.05{\sim}20GHz$.