• Title/Summary/Keyword: 주파수 선택막

Search Result 16, Processing Time 0.027 seconds

Thermal Residual Stresses and Spring back Effects on the Frequency Selective Surface Embedded Composite Laminates (주파수 선택막이 삽입된 복합재 평판의 잔류 열응력과 스프링 백 효과)

  • Park, Kyoung-Mi;Seo, Yun-Seok;Chun, Heoung-Jae;Hong, Ic-Pyo;Park, Yong-Bae;Kim, Yun-Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.6
    • /
    • pp.475-481
    • /
    • 2013
  • The residual stresses occur in the Frequency Selective Surface(FSS) embedded hybrid composite structures after co-curing due to mismatch among the coefficient of thermal expansions and stiffness values between the FSS and composite materials. The spring backs occur due to these residual stresses. Therefore, in this paper, the spring-backs caused by residual stresses in FSS embedded composite structures were studied with considering effect of symmetric and unsymmetric stacking sequence of composite laminates.

Thermal Residual Stresses in the Frequency Selective Surface Embedded Composite Structures and Design of Frequency Selective Surface (주파수 선택적 투과막이 결합된 복합재료의 잔류응력평가 및 선택적 투과막 설계)

  • Kim, Ka-Yeon;Chun, Heoung-Jae;Kang, Kyung-Tak;Lee, Kyung-Won;Hong, Ic-Pyo;Lee, Myoung-Keon
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • In this paper, Particle Swarm Optimization(PSO) is applied to the design of the Frequency Selective Surface(FSS) and residual stresses of hybrid radome is predicted. An equivalent circuit model with Square Loops arrays was derived and then PSO was applied for acquiring the optimized geometrical parameters with proper resonant frequency. Residual stresses occur in the FSS embedded composite structures after cocuring and have a great influence on the strength of the FSS embedded composite structures. They also effect transmission quality because of delamination. Therefore, the thermal residual stresses of FSS embedded composite structures were analyzed using finite element analysis with considering the effects of FSS pattern, and composite stacking sequence.

Transmission Characteristics of Curved Reconfigurable Frequency Selective Structure (곡면 재구성 주파수 선택막의 투과특성)

  • Lee, In-Gon;Hong, Ic-Pyo;Chun, Heoung-Jae;Park, Yong-Bae;Kim, Yoon-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.311-317
    • /
    • 2014
  • In this paper, the flexible and reconfigurable frequency selective surface for C-band was designed using patch array and grid structure for radome and other curved surface applications. Frequency reconfigurability was obtained by varying the capacitance of varactor diode and flexibility is implemented by using flexible PCB. For the validity of the proposed structure, we fabricated the flexible and reconfigurable frequency selective structure and measured the frequency reconfigurability for different bias voltages and different curvature surfaces from the optimized design parameters. From the measurement results, we know that the proposed structure has the wideband reconfigurable frequency bandwidth of 6.05-7.08GHz. We can apply this proposed structure to the curved surface like as radome of aircraft or warship.

Theoretical Analysis of Phase Detector Technique for the Measurement of Cell Membrane Capacitance During Exocytosis (세포외 분비시 막 캐패시턴스를 측정하기 위한 위상감지법(phase detector technique)의 이론적 분석.)

  • Cha, Eun-Jong;Goo, Yong-Sook;Lee, Tae-Soo
    • Progress in Medical Physics
    • /
    • v.3 no.2
    • /
    • pp.43-57
    • /
    • 1992
  • Phase detector techique provides a unique probe to membrane recycling phenomenon by enabling dynamic monitoring of cell membrane capacitance. However, it has inherent errors due to constant changes in measurement environments. The present study analyzed several error sources to develope application criteria of this technique. and the following was found based on a theoretical analysis. The initial phase angle has to be appropriately selected to minimize the error due to perturbation of access and membrane conductances. Excitation frequency is also important to determine the initial phase angle. However. deviation of the phase angle from a predetermined initial value during the measurement period does not affect capacitance estimation to a significant degree. Despite an appropriate initial phase selection an error in scaling factor is expected for a large increase in capacitance during exocytosis. which may be overcome by iteratively correcting the scaling factor over the measurement period. These results will provide a useful guideline in practical application of this technique.

  • PDF

Study on Thermal Residual Stresses and Transmission Characteristics in N-pole Type Frequency Selective Surface Embedded Composite Structures (N-pole 종류의 FSS가 결합된 복합재료 구조의 잔류응력과 전파투과특성)

  • Park, Kyoung Mi;Hwang, In Han;Chun, Heoung Jae;Hong, Ic Pyo;Park, Yong Bae;Kim, Yoon Jae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • In this paper, the delamination and failures in frequency selected surface(FSS) caused by residual stresses in the FSS embedded hybrid composites due to the difference between the coefficients of thermal expansion of components and the transmission characteristic changes due to deformation of FSS patterns by residual stresses were studied. FSS may have different electromagnetic characteristics depending on the type of element, design variables, and arrangement. Design variables of dipole FSS were determined using PSO(Particle Swarm Optimization) to obtain the transmission characteristic for the target resonant frequency. Subsequently, the design variables of other types of N-pole(tripole, cross dipole, and Jerusalem cross) were determined based on the dimensions of the dipole for the comparisons of residual stresses of FSS embedded composite structures and transmission characteristics. In addition, effects of FSS pattern, and stacking sequence of composite laminates were considered.

Double rectangular spiral inductor의 제조에 관한 연구

  • 김충식;신동훈;정종한;남승의;김형준
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.144-144
    • /
    • 1999
  • 최근 국내 반도체 기술의 비약적인 발전으로 전자 기기 전반에 소형화, 고주파화, 고기능화 등이 진행되는데 반해, 반도체 소자등에 전원을 공급하거나 회로 전체를 운용하는 전기 신호를 변조.증폭시키는데 반해, 반도체 소자등에 전원을 공급하거나 회로 전체를 운용하는 전기신호를 변조.증폭시키는 인덕터, 트랜스 포머와 같은 수동 자기 소자는 아직도 3차원 벌크 형태로 사용되고 있다. 일본을 중심으로 각국에서는 자기 소자의 박막.소형화에 대한 다각도의 연구가 진행되었으나 국내서는 아직 미미한 실정이다. 따라서 고집적 전원 공급 장치나 지능 센서 등에 반도체와 자기 소자의 사용 주파수 대역과 크기가 통합된 반도체-자성체 IC(semiconductor-magnetic integrated circuit)의 필요성이 절실히 요구되고 있다. 현재 사용중인 벌크형 인덕터나, 트랜스 포머의 경우 10NHz이상의 고주파 대역에는 응용되지 못하고 있다. 이는 적용된 자성체가 페라이트(ferrite)로서 초투자율은 크지만 고주파대역에서의 공진 현상에 의해 저투자율을 나타내고, 포화 자속밀도가 낮기 때문이다. 이러한 페라이트 자성체의 대체품으로 주목받고 있는 것이 Fe, Co계 고비저항 자성마이다. 그러나 Co는 낮은 포화자속밀도를 나타내기 때문에 이러한 조건을 충족시키는 자성막으로 Fe계 미세 결정막을 사용하였다. 본 연구에서는 선택적 전기 도금법(selective electroplating method)과 LIGA like process를 이용하여 공시형 인덕터(air core inductor)의 라이브러리(library)를 구축한 뒤, 고주파 대역에서의 우수한 연자기 특성을 가지는 Ti/FeTaN막을 적용한 자기 박막 인덕터(magnetic thin film inductor)를 제작하여 비교.분석하였다. 제조된 인덕터의 특성 추정은 impedence analyzer를 이용하여 주파수에 따른 저항(resistance), 인덕턴스(inductance)를 측정, 계산한 성능지수(quality factor)로서 인덕터의 성능을 평가하였다. 제조된 박막 인덕터의 코일 형상은 5턴의 double rectangular spiral 구조였으며, 적용된 자성막의 유효 투자율9effective permeability)은 1500, 자성막, 절연막 그리고 코일의 두께는 각각 2$\mu\textrm{m}$, 1$\mu\textrm{m}$, 20$\mu\textrm{m}$이며 코일의 폭은 100$\mu\textrm{m}$, 코일간의 간격은 100$\mu\textrm{m}$였다. 제조된 박막 인덕터는 5MHz에서 1.0$\mu$H의 인덕턴스를 나타내었으며 dc current dervability는 100mA까지 유지되었다.

  • PDF

Analysis for the Effect of EMI Shield Layers' Height on Circuit Function (EMI 차폐막의 높이가 회로의 기능에 미치는 영향 분석)

  • Kim, Hyeon-Woo;Woo, Jin-Ha;Jang, Se-Hyun;Chang, Tae-Soon;Lee, Won-Hui;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.57-63
    • /
    • 2019
  • S-parameters were used to analyze the effect of the circuit according to the height of the EMI shield layers. Among the S-parameters, S11, S21, S22, and S31 were used as factors for determining the effect on the circuit function. Simulations were performed using shields made of Graphite and Ferrite, and the frequencies were run from 100 MHz to 1 GHz. As the height of the shield was increased, the value of S21 was getting closer to 0 dB. In addition, the SE value was confirmed to improve the shielding performance according to the thickness of the insulating layer only in a specific frequency band. Based on 800um with thickest silicon dioxide thickness, the FG structure averaged -1 dB in narrow frequency bands between 100 MHz and 300 MHz, showing better efficiency than GF with an average of -2 dB. Although GF structures do not show high efficiency, they exhibit average performance of -3 dB in frequency bands between 100 MHz and 1 GHz rather than FG structures that sway over a wide range. In other words, FG and GF structures have trade-off structures. Therefore, it should be noted that the appropriate structure is selected for use.

Design of Transparent Electromagnetic Absorbing Structure for Stealth Aircraft Canopy (스텔스 전투기 캐노피를 위한 투명 전자파 흡수구조 설계)

  • Hong, Ic-Pyo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.369-375
    • /
    • 2015
  • In this paper, transparent circuit analog radar absorbing structure with angular stability for stealth aircraft canopy was proposed and designed. To obtain wideband electromagnetic absorption, optical transparency and smaller thickness, we proposed the novel FSS(Frequency Selective Surface) for X-band and implemented the resistive FSS and PEC(Perfect Electric Conductor) plane using ITO(Indium Thin Oxide) coating with optical transmissivity of 90 %. Reflection loss characteristics for different incident angles of both TE(Transverse Electric) and TM(Transverse Magnetic) polarizations are presented through simulations. We then fabricated the proposed structure to verify the simulation results. The comparisons between the simulation and measured results show good agreements. The results also show that the proposed radar absorbing structure can provide better frequency stability for different incidence angles and polarizations as well as optical transparency. We can apply this proposed structure to the canopy of stealth aircraft and other stealth applications for visible transparency.

Multi-band directional antenna for satellite communications (위성 통신용 다대역 안테나)

  • Cheong, Chi-Hyun;Jeong, Hye-Mi;Kim, Kun-Woo;Bae, Ki-Hyoung;Tae, Hyun-Sik;Evtyushkin, Gennadiy
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1223-1231
    • /
    • 2010
  • The design is presented for a SATCOM antenna capable of simultaneous multi-band (X/Ku/Ka-Band) communications without replacement of feed horns or change of other parts in the application as a ground satellite terminal for large data transfer. The antenna is the offset configuration and consists of a dual-band(X/Ka-band) feed horn, a single-band(Ku-band) feed horn, a frequency selective surface(FSS) sub-reflector and a parabolic main-reflector. The antenna has a main reflector defining a prime focus and a frequency selective surface sub-reflector defining an image focus. A dual-band feed and a single-band feed are provided at each of the prime focus and image focus. The antenna is designed using 3D EM simulator and the gains measured in X/Ku/Ka-band of the complete antenna assembly is more than 31.6dBi, 36.8dBi, 40.8dBi, and the cross polarization is 21.7dB, 26.6dB, 25.2dB, respectively.

Biomimetics of Nano-pillar (나노섬모의 자연모사 기술)

  • Hur, Shin;Choi, Hong-Soo;Lee, Kyu-Hang;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.98-105
    • /
    • 2009
  • The cochlea of the inner ear has two core components, basilar membrane and hair cells. The basilar membrane disperses incoming sound waves by their frequencies. The hair cells are on the basilar membrane, and they are the sensory receptors generating bioelectric signals. In this paper, a biomimetic technology using ZnO piezoelectric nano-pillar was studied as the part of developing process for artificial cochlea and novel artificial mechanosensory system mimicking human auditory senses. In particular, ZnO piezoelectric nano-pillar was fabricated by both low and high temperature growth methods. ZnO piezoelectric nano-pillars were grown on solid (high temperature growth) and flexible (low temperature growth) substrates. The substrates were patterned prior to ZnO nano-pillar growth so that we can selectively grow ZnO nano-pillar on the substrates. A multi-physical simulation was also conducted to understand the behavior of ZnO nano-pillar. The simulation results show electric potential, von Mises stress, and deformation in the ZnO nano-pillar. Both the experimental and computational works help characterize and optimize ZnO nano-pillar.