Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.27-29
/
2023
불안정한 부동산 가격은 지속적인 사회 문제로 거론되고 있는데 이는 부동산 매매 가격을 예측할 수 있는 정확한 지표가 체계적이고 구체적으로 확립되지 않았기 때문이다. 본 논문은 가격변동에 주요하게 영향을 미치는 특성을 파악하여 가격 예측 지표로 활용하기 위해 머신러닝 모델을 적용하여 특성 분석을 수행한다. 이를 위해 한국부동산원에서 제공하는 2021년 10월부터 2022년 9월까지 1년간의 역 주변 500M 이내 거래 데이터 약 30만 6천 개를 어떠한 과정으로 전처리하여 머신러닝 모델에 적용하였는지 기술한다.
Kim, Hyojeong;Lee, Changmoo;Lee, Jisu;Kim, Minyoung;Ryu, Taeheyeon;Shin, Hyeyoung;Kim, Jiyeon
Journal of Cadastre & Land InformatiX
/
v.51
no.2
/
pp.125-139
/
2021
Continuous subway line expansion over the years in Seoul metropolitan area has contributed to improved accessibility to public transport. Since public transport accessibility has a significant impact on housing decisions, quantitative analysis of correlation between housing prices and public transport accessibility is regarded as one of the most important factors for planning better housing policies. This study defines the reduction of traveling time resulted from the construction of new metro stations despite them not being the closest stations as 'Network Expansion Effect', and seeks to understand how the Network Expansion Effect impacts on housing prices. The study analyzes monthly rent data converted from upfront lump sum deposit, so called Jeonse in Korea, from 2012 to 2018, through 'A Modified Repeat Sales Model.' As a result, the effect of 'Network Expansion' on rental prices in Seoul has stronger during the period of 2017 to 2018 than the base period of 2012 to 2014, which suggests the 'Network Expansion' has a meaningful effect on rent. In addition, in comparison between the most and the least affected group of apartments by 'Network Expansion Effect', the most affected group has more price increase than the least affected group. These findings also indicate that different levels of 'Network Expansion Effect' have various influences on the value of residential real estate properties.
This paper aims to analyze characteristic by the cities focused on the ratio of new apartment resale that is one of the apartment unit sale market, which has been increased recently. So, this study examined characteristics of population, apartment trade & sale, housing with 162 cities and counties and performed multiple regression analysis with dependent variable, ratio of new apartment resale. As a result. the factors affecting the ratio of new apartment resale are 7variables, apartment sales rate, transfer of ownership, apartment turnover rate, sale volume, regional apartment rate, population increasing rate, housing average apartment sale price rate. In terms of the increase in apartment sales prices, the rate of sales price increase was relatively low in areas where the transaction rate for apartment sales is high, and the number of apartment sales right transactions increased as the number of other ownership transfers rose. As a result, the data will be based on the improvement of the government's policies and systems to stimulate the transaction focused on the real estate agents in the apartment market.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.9
/
pp.6315-6324
/
2015
This study analyses the effects of household finances on rental price of apartment in Seoul which play a major role in real estate policy. We estimate VAR models using time series data. Economy variables such as sales price of apartment in Seoul, consumer price index, hiring rate, real GNI and loan amount of housing mortgage, which relate to household finances and influence the rental price of apartment, are used for estimation. The main findings are as follows. In the short term, the rental price of apartment is impacted by economy variables. Specifically, Relative contributions of variation in rental price of apartment through structural shock of economy variables are most influenced by their own. However, in the long term, household variables are more influential to the rental price of apartment. These results are expected to contribute to establish housing price stabilization policies through understanding the relationship between economy variables and rental price of apartment.
Proceedings of the Korean Institute of Building Construction Conference
/
2019.11a
/
pp.207-208
/
2019
Currently, as the public interest for environmental issues has grown rapidly, the needs for G-SEED have also increased. However, as investment according to eco-friendly elements is inevitable to receive G-SEED certification, it is necessary to find out whether or not the sales price of apartments have increased compared to investment costs. Therefore, the objective of this study is to analyze the sales price of apartments according to G-SEED by using T-test. To achieve the objective, First, variables affecting on the sales price of apartments are selected. Second, the data are collected by using GIS(Geographic Information System). Third, after testing the normality, a comparison analysis is conducted on the sales price between G-SEED certified and non-certified apartments by using T-test. As a result, it is concluded that G-SEED certified apartments are more expensive than non-certified apartments. In the future, these findings can be utilized to develop of apartments price calculation model based on the G-SEED.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.5
/
pp.116-124
/
2016
In the past, once apartments were built by housing construction companies, their presale went smoothly. Therefore, the developer and construction companies in Korea were extremely competitive in the housing market. However, when the 1997 foreign exchange crisis and 2008 global financial crisis occurred, the quantity of unsold new housing stocks rapidly increased, which caused construction companies to experience a serious liquidity crisis. This paper aims at analyzing the influence of Liquidity on the Housing Market before and after Macroeconomic Fluctuations using VECM. The periods from September 2001 to September 2008 and from October 2008 to October 2015, which were before and after the Subprime financial crisis, were set as Models 1 and 2, respectively. The results are as follows. First, it is important to develop a long-term policy for the housing transaction market to improve household incomes. Second, due to the shortage in the supply of jeonse housing, structural changes in the housing market have appeared. Thus, it is necessary to seek political measures to minimize the impact of transitional changes on the market.
Journal of the Korea Academia-Industrial cooperation Society
/
v.17
no.10
/
pp.635-646
/
2016
This paper proposes a housing business model, where the presale and Chonsei housing are supplied under a presale system at the same time based on the characteristic correlation between the housing presale market and Chonsei market in Korea. Markowitz portfolio theory was used to review the risk diversification effects from the changes in the ratio between the presale housing supply and the Chonsei housing supply. The housing sale price indicator was used as a proxy variable to determine the presale housing supply. The housing Chonsei price indicator was used as a proxy variable to determine the Chonsei housing supply. The proposed housing business model was applied to major areas in Korea to examine the risk diversification effect. Comparisons of the regional portfolio analyses showed that the flexibility of the proposed housing business model can be quite effective because each regional housing market exhibits different characteristics. Market participants, such as developers, construction companies, consumers, and government, can expect various effects through the proposed housing business model. Nevertheless, policy support is necessary for practical applications of the proposed housing business model. In particular, public funds from the government need to be introduced.
Based on prior studies on real estate policy, tax policy, and financial policy, this study examined how tax policy and financial policy affected real estate prices using monthly data from January 2014 to December 2021. We performed a VAR model using unit root tests, cointegration tests, as well as conducted impulse response analysis and variance decomposition analysis. The results are as follows. First, the tax regulation index and the financial regulation index had no discernible impact on housing prices. Specifically, a one-sided stabilizing regulatory policy was ineffective and, instead, led to unintended side effects, such as price increases resulting from reduced transaction volume. Secondly, mortgage rates had a negative impact on the housing sale price index. In other words, an increase in interest rates might led to a decrease in housing prices. Thirdly, an increase in the transfer difference, which involves capital gains tax, has a positive effect on housing prices. This led to rising housing prices because the transfer taxes were shifted to buyers, causing them to hesitate to make purchases due to the increased tax burden. Fourthly, both acquisition taxes and mortgage loans had relatively little impact on housing prices.
Researches on the prediction of domestic apartment sales price have been continuously conducted, but it is not easy to accurately predict apartment prices because various characteristics are compounded. Prior to predicting apartment sales price, the analysis of major factors, influencing on sale prices, is of paramount importance to improve the accuracy of sales price. Therefore, this study aims to analyze what are the factors that affect the apartment sales price in Gwangju, which is currently showing a steady increase rate. With 6 years of Gwangju apartment transaction price and various social factor data, several maching learning techniques such as multiple regression analysis, random forest, and deep artificial neural network algorithms are applied to identify major factors in each model. The performances of each model are compared with RMSE (Root Mean Squared Error), MAE (Mean Absolute Error) and R2 (coefficient of determination). The experiment shows that several factors such as 'contract year', 'applicable area', 'certificate of deposit', 'mortgage rate', 'leading index', 'producer price index', 'coincident composite index' are analyzed as main factors, affecting the sales price.
Journal of the Korea Academia-Industrial cooperation Society
/
v.15
no.5
/
pp.3260-3269
/
2014
The construction industry has strong ties with other industries, and so construction company insolvency also has a strong influence on other industries. Prediction models addressing the insolvency of construction company have been well studied. Although factors contributing to insolvency must precede those of predictions of insolvency, studies on these contributing factors are limited. The purpose of this study is to analyze the influence of changes in the housing market on construction company insolvency by using the Vector Error Correction Model. Construction companies were divided into two groups, and the expected default frequency(EDF), which indicates insolvency of each company was measured through the KMV model. The results verified that 10 largest construction companies were in a better financial condition compared to relatively smaller construction companies. As a result of conducting impulse response analysis, the EDF of large companies was found to be more sensitive to housing market change than that of small- and medium-sized construction companies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.