• Title/Summary/Keyword: 주제어 가중치 색인

Search Result 12, Processing Time 0.015 seconds

Social Network Analysis on Research Keywords of Child-Occupation Studies (아동의 작업 연구주제어의 사회연결망 분석)

  • Ha, Seong-Kyu;Park, Kang-Hyun
    • Therapeutic Science for Rehabilitation
    • /
    • v.12 no.4
    • /
    • pp.39-51
    • /
    • 2023
  • Objective : This study seeks to unveil the intellectual framework of research surrounding children's occupations by utilizing social network analysis of keywords from studies focused on childhood. Methods : From August 2003 to August 2023, we analyzed 3,364 keywords extracted from 270 research articles in the Korean Citation Index with the keyword "Child and Occupation" using the NetMiner program. Results : Research on children's work has increased quantitatively over the past decade. Keywords exhibiting a high degree of centrality in the realm of child occupation research included Task (0.055), Group therapy (0.040), Working memory (0.037), Intervention (0.033), Performance (0.030), Language (0.026), Ability (0.026), Skill (0.024), and Program (0.023). Notably, the weighted terms in the Word Network included Evaluation-Tool (30), School-Student (15), and Activity-Participation (15). The primary keywords from each topic in topic modeling were Activity (0.295), Disability (0.604), Education (0.356), Skill (0.478), School (0.317), Function (0.462), Disorder (0.324), Language (0.310), Comprehension (0.412), and Training (0.511). Conclusion : This study describes the trends in the domestic field of pediatric occupational research. These efforts provided valuable insights into pediatric occupational therapy in South Korea.

A Experimental Study on the Development of a Book Recommendation System Using Automatic Classification, Based on the Personality Type (자동분류기반 성격 유형별 도서추천시스템 개발을 위한 실험적 연구)

  • Cho, Hyun-Yang
    • Journal of Korean Library and Information Science Society
    • /
    • v.48 no.2
    • /
    • pp.215-236
    • /
    • 2017
  • The purpose of this study is to develop an automatic classification system for recommending appropriate books of 9 enneagram personality types, using book information data reviewed by librarians. Data used for this study are book review of 501 recommended titles for children and young adults from National Library for Children and Young Adults. This study is implemented on the assumption that most people prefer different types of books, depending on their preference or personality type. Performance test for two different types of machine learning models, nonlinear kernel and linear kernel, composed of 360 clustering models with 6 different types of index term weighting and feature selections, and 10 feature selection critical mass were experimented. It is appeared that LIBLINEAR has better performance than that of LibSVM(RBF kernel). Although the performance of the developed system in this study is relatively below expectations, and the high level of difficulty in personality type base classification take into consideration, it is meaningful as a result of early stage of the experiment.