The stock price reflects people's psychology, and factors affecting the entire stock market include economic growth rate, economic rate, interest rate, trade balance, exchange rate, and currency. The domestic stock market is heavily influenced by the stock index of the United States and neighboring countries on the previous day, and the representative stock indexes are the Dow index, NASDAQ, and S & P500. Recently, research on stock price analysis using stock news has been actively conducted, and research is underway to predict the future based on past time series data through artificial intelligence-based analysis. However, even if the stock market is hit for a short period of time by the forecasting system, the market will no longer move according to the short-term strategy, and it will have to change anew. Therefore, this model monitored Samsung Electronics' stock data and news information through text mining, and presented a predictable model by showing the analyzed results.
As the use of trading systems has increased rapidly, many researchers have become interested in developing effective stock market prediction models using artificial intelligence techniques. Stock market prediction involves multifaceted interactions between market-controlling factors and unknown random processes. A successful stock prediction model achieves the most accurate result from minimum input data with the least complex model. In this research, we develop a combination model of ${\pi}$-fuzzy logic and support vector machine (SVM) models, using a genetic algorithm to optimize the parameters of the SVM and ${\pi}$-fuzzy functions, as well as feature subset selection to improve the performance of stock market prediction. To evaluate the performance of our proposed model, we compare the performance of our model to other comparative models, including the logistic regression, multiple discriminant analysis, classification and regression tree, artificial neural network, SVM, and fuzzy SVM models, with the same data. The results show that our model outperforms all other comparative models in prediction accuracy as well as return on investment.
The stock market is constantly changing and sometimes a slump or a sudden rising in stocks happens without any special reason. So the stock market is recognized as a complex system and it is hard to predict the change on stock prices. In this paper we consider the stock market to a network consisting of stocks. We analyzed the dynamics of the Korean stock market network and evaluated the changing of the correlation between shares consisting of the time series data of 137 companies belong to KOSPI200. Our analysis shows that the stock prices tend to plummet when the correlation between stocks is very high. We propose a method for recommending the stock portfolio based on the analysis of the stock market network. To show the effectiveness of the recommended portfolio, we conducted the simulated stock investment and compared the recommended portfolio with the efficient portfolio proposed Markowitz. According to the experiment results, the rate of return of the portfolio is about 10.6% which is about 3.7% and 5.6% higher than the average rate of return of the efficient portfolio and KOSPI200 respectively.
Stock market prediction has been long dream for researchers as well as the public. Forecasting ever-changing stock market, though, proved a Herculean task. This study proposes a novel stock market sentiment lexicon acquisition system that can predict the growth (or decline) of stock market index, based on economic news. For this purpose, we have collected 3-year's economic news from January 2015 to December 2017 and adopted Word2Vec model to consider the context of words. To evaluate the result, we performed sentiment analysis to collected news data with the automated constructed lexicon and compared with closings of the KOSPI (Korea Composite Stock Price Index), the South Korean stock market index based on economic news.
시계열 데이터에서 패턴을 분석하는 기법은 많은 발전이 이루어져 오고 있으나 주식시장의 경우 패턴 분석 및 예측에 관련되어 많은 연구가 이루어져 있지 않고 있다. 이는 주가의 등락 자체가 본질적으로 무작위하다고 생각되어지고 있기 때문이다. 본 연구에서는 주가의 등락이 보여주는 무작위성의 정도를 Kolmogorov Complexity로 측정, 그 무작위성의 정도와 본 논문에서 제시한 반전역정렬로 예측하는 주가의 예측 간의 상관관계를 보인다. 이를 위하여 KOSPI 주식 데이터 28년 690개의 데이터를 수집하여 이들 주식 데이터의 등락을 양자화된 문자열로 변환하여 본 논문에서 제시한 방법의 의미를 평가하였다. 그 결과 Kolmogorov Complexity가 높은 경우에는 주가 변동 예측이 어려우며, Kolmogorov Complexity가 낮은 경우에는 주식 변동 예측은 가능하나 등락 예측 율은 단기 예측은 12%이상의 예측율을 보일 수 없으며, 장기 예측의 경우 54%의 예측율로 수렴함을 확인하였다.
The purpose of this study was to analyze the correlation and volatility of Korea and neighboring East Asia stock markets. East Asian stock markets were selected for Japan, China, Hong Kong and Taiwan by economically and geographically close with Korea. If you understand the volatility and the correlation between Korea and the East Asian stock market, it may be helpful in predicting investment. And It may reduce the risk of investing of asset allocation in global portfolio level. For this using the national monthly return data for the last 163 months, I was calculating and comparison the rate and correlation, and regression analysis. Result of the correlation analysis, Korea have shown a low correlation with China. while showing a high correlation with Taiwan and Hong Kong. China has been forming its own market in East Asia and showing a low correlation with other countries exception Hong Kong. Hong Kong has been determined as the highest harmonization within the East Stock Market.
본 논문에서는 기업의 성장성변수(기업지분의 시장가치 대 장부가치 비율, MB)가 이익반응 계수에 체계적인 영향은 미치는가를 1991년부터 1994년까지 한국증권시장을 대상으로 재무분석가의 예측치에 의한 사건시점방법을 사용하여 실증적으로 분석하였다. 여러 사건시점을 분석한 결과 기업의 성장성과 이익반응계수가 유의적인 정의 관계가 있다는 것을 발견하였다. 이는 우리나라 증권시장에서 성장성이 높은 기업에서의 이익변화가 성장성이 낮은 기업에 비하여 주식수익률에 더 큰 영향을 미친다는 것을 의미한다, 이에 추가로 Skinner와 Sloan(1998)에서 발견된 고성장기업에서 부의 비기대이익에 대한 큰 폭의 주식수익률 하락이 우리나라 시장에서도 나타나는가를 분석하였다. 이들의 결과와는 달리 우리나라 증권시장에서는 이러한 현상이 발견되지 않았으며, 이는 고성장기업에 대하여서도 이익정보가 주식시장에 적절하게 반영된 다는 것을 나타낸다. 본 논문은 우리나라 증권시장에서 기업이익과 수익률간의 사건시점방법을 통한 연구에 있어서 기업의 성장성변수(기업의 시장가치대 장부가치의 비율)가 통제되어야 하는 변수라는 것을 나타낸다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.7-10
/
2022
본 연구는 국내 주식의 intraday 가격변화를 딥러닝 모형들로 예측하고 그 예측모형을 이용한 매매전략 딥러닝 모형을 제안한다. 주식의 intraday 가격변화에 따라서, 고빈도 매매, 주문집행문제 (order execution problem), 자동화 매매 등과 같은 intraday 주식 트레이딩의 수익률이 달라지기 때문에, 주식의 intraday 가격변화 예측은 주식 투자에 있어서 중요하다. 해외 시장에 대해서는 인공지능 등을 이용한 intraday 가격변화 예측 연구가 활발히 이루어졌지만, 국내의 경우 관련한 연구가 드물어 그 효용성이 명확히 드러나지 않았었다. 그에 따라서, KOSPI 50의 구성 종목에 대하여 정준의(canonical) 딥러닝 모형들을 적용하여 예측 성능을 비교한다. 또한, 그 예측모형들을 활용하여 간소화된 주문집행문제에서의 매매전략 딥러닝 모형을 제안한다. 그리고, 제안한 매매전략 딥러닝 모형을 KOSPI 50의 구성 종목에 대하여 실험하여, 제안한 방법론이 유효함을 밝힌다. 제시된 모형을 실제 주식 매매에 직접 적용하여 수익성을 개선을 기대할 수 있고, 사람이 직접 거래할지라도 효과적인 보조 지표가 될 수 있기에 본 논문은 실용적 의미를 지닌다.
KIPS Transactions on Software and Data Engineering
/
v.7
no.10
/
pp.387-396
/
2018
Stock price prediction has been a difficult problem to solve. There have been many studies to predict stock price scientifically, but it is still impossible to predict the exact price. Recently, a variety of types of cryptocurrency has been developed, beginning with Bitcoin, which is technically implemented as the concept of distributed ledger. Various approaches have been attempted to predict the price of cryptocurrency. Especially, it is various from attempts to stock prediction techniques in traditional stock market, to attempts to apply deep learning and reinforcement learning. Since the market for cryptocurrency has many new features that are not present in the existing traditional stock market, there is a growing demand for new analytical techniques suitable for the cryptocurrency market. In this study, we first collect and process seven cryptocurrency price data through Bithumb's API. Then, we use the gradient boosting model, which is a data-driven learning based machine learning model, and let the model learn the price data change of cryptocurrency. We also find the most optimal model parameters in the verification step, and finally evaluate the prediction performance of the cryptocurrency price trends.
There are several stylized facts concerning stock return volatility. First, it is persistent, so an increase in current volatility lasts for many periods. Second, stock volatility increases after stock prices fall. Third, stock volatility is related to macroeconomic volatility, recessions, and banking crises. On the other hand, there are many competing parametric models to represent conditional heteroskedasticity of stock returns. For this article, I adopt the strategy followed by French, Schwert, and Stambaugh(1987) and Schwert(l989, 1990). The models in this article provide a more structured analysis of the time-series properties of stock market volatility. Briefly, these models remove autoregressive and seasonal effects from daily returns to estimate unexpected returns. Then the absolute values of the unexpected returns are used in an autoregressive model to predict stock volatility.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.