Proceedings of the Korea Information Processing Society Conference
/
2015.04a
/
pp.277-280
/
2015
자본주의는 시장 경제를 토대로 하고 있다. 시장 경제는 주식시장이 핵심이며, 주식시장의 위험회피를 위한 파생시장은 결국 자본주의의 가장 근본적인 요소이다. 다양하고 복잡한 파생시장에서 시스템 트레이딩의 중요성은 나날이 커지고 있으며, 감정을 극복하고 전략적인 매매를 하기 위한 최선의 방법이기도하다. 한국의 시스템 트레이딩은 전통적인 TS와 최신기술로 탄생한 Multicharts가 있다. Multicharts는 틱 단위의 신호데이타를 분석하여 실시간 거래를 할 수 있는 뛰어난 시스템이지만 아직 스마트폰 에이전트가 없다. PC에서는 Multicharts의 모든 기능을 수행할 수 있지만 관리자가 어디에서나 상황을 체크하고 제어할 수 있다면 훨씬 효과적인 운용이 가능할 것이다. PC에 기록되는 신호정보와 거래정보를 스마트폰으로 확인하고, 전략 실행을 스마트폰에서 제어하는 것만 가능해도, 보다 여유롭고 효율적인 파생거래를 할 수 있다. 이를 위해 안드로이드 폰과 PC간의 보안 연결을 설정하고 데이터 동기화를 구축하며, 이벤트 처리를 구현했다. 그리고 다수의 샘플 전략을 이용하여 스마트폰 UI를 구성하고 이의 효율성을 테스트하였다.
Correlation of KOSPI from stock market and Apartment Prices in Seoul HPPCI from real estate market has been found from this research. Furthermore, from the comparison of those indicators' flows, certain precedence was found as well. The purpose of this research is to analyze correlation and precedence among KOSPI, Apartment price in Seoul, HPPCI and CLI. As for predicting KOSPI of stock market and real estate market, it is necessary to find out preceding indices and analyzing their progresses first. For 27 years from the January 1987 to December 2013, KOSPI has been grown by 687%, while CLI showed 443%, Apartment of Seoul showed 391%, HPPCI showed 263% of growth rate in order. As the result of correlation analysis among Apartment of Seoul, CLI, KOSPI and HPPCI, KOSPI and HPPCI showed high correlation coefficient of 0.877, and Apartment of Seoul and CLI showed that of 0.956 which is even higher. Result from the analysis, CLI shows high correlation with stock and real estate market, it is a good option to watch how CLI flows to predict stock and real estate market.
In the domestic stock market, the capital market opened in January 1992, and the proportion of foreign capital has steadily increased, accounting for 30% of the domestic market in Overall stock market trend infers that the domestic stock market is more influenced by foreign issues than domestic issues. The trading trend of foreign capital displays a similar flow to exchange rate fluctuations,; thus, preparing an investment strategy by using the Pearson analyzing method the effect of exchange rates of foreign capital trading, fluctuations in exchange rates, and predicting one of the macroeconomic indicators will yield high returns in the stock market. Therefore, this research was conducted to help investment by predicting foreign variables comparing and analyzing exchange rates and foreign capital trading patterns, and predicting appropriate time for buying and selling.
Proceedings of the Safety Management and Science Conference
/
2007.04a
/
pp.471-476
/
2007
본 논문의 목적은 과거의 산업 포트폴리오 수익률이 확률추세로부터 어떻게 전체 주식시장과 두 가지 거시경제 변수인 경기동행지수와 산업생산 등을 예측할 수 있는 지를 알아보는 데에 있다. 이를 위하여 본 연구에서는 연구모형을 설정한 후 세 가지 검정절차를 제시하고 이를 실증적으로 분석하였다. 당월의 전체 주식시장 수익률은 과거의 시차를 지닌 특정 산업부문 포트폴리오 수익률에 대하여 양(+)의 상관관계를 유지하고 있다는 '예측 1'과 전체 주식시장의 수익률은 특정 산업부문의 수익률에 대하여 선행성을 지닐 수 없다는 '예측 2'에 대한 검정 결과는 '예측 1'과 '예측 2'가 지지되고 있음을 파악할 수 있었다. 그리고 산업별 포트폴리오 수익률과 거시경제변수 간의 높은 상관관계를 토대로 하여 전체주식시장 수익률 예측을 가능하게 하는 업종 정보의 점진적 확산 현상이 발생하게 되는가를 검토하기 위하여 각 산업들의 포트폴리오 수익률과 전체 주식시장 수익률이 VAR모형을 토대로 볼 경우 Granger 인과관계를 갖고 있는 지를 분석하였다. 분석결과 21개 업종은 각 산업별 포트폴리오 수익률이 전체 주식시장 수익률을 5% 수준에서 통계적으로 유의한 영향을 주고 있음을 알 수 있었다. 이들 21개의 산업별 포트폴리오 수익률은 경제적으로도 중요한 의미를 지니고 있어 산업제품의 가격 상승과 하락이 경제에 미치는 영향을 파악할 수 있다. 특히 음료 업종에서 전체 주식시장 수익률과 상호간의 인과성을 나타내었으며, 인터넷과 화장품 업종에서는 전체 주식시장 수익률이 이들 업종에 대하여 일방적인 영향을 보이고 있음을 알 수 있었다.>$mgN\;{\cdot}\;L^{-1}$ 및 0.000-0.804 $mgN\;{\cdot}\;L^{-1}$이였다. 규소농도는 0.0-6.2 $mgSi\;{\cdot}\;L^{-1}$의 범위로 3-5월에 매우 낮았으며, 계절적인 변화가 뚜렷히 나타났다. 저질의 입자는 0-125인 silt및 coarse silt로 이루어져 있으며, COD는 51.4-116.9 $mgO_2\;{\cdot}\;gdw^{-1}$로 평균 93.0 $mgO_2\;{\cdot}\;gdw^{-1}$ 이였다. 저질내의 TP및 TN의 농도는 각각 0.04-1.46 $mgP\;{\cdot}\;gdw^{-1}$ 및 0.12-1.03 $mgN\;{\cdot}\;gdw^{-1}$이었다. 표층의 엽록소 a의 정점별 평균값은 정점 1, 2 및 3에서 각각 15.6, 15.2 및 16.0 $mg\;{\cdot}\;m^{-3}$으로 유사하였다. 식물플랑크톤은 총 49종이 출현하였으며, 생물량은 50-23, 350 cells ${\cdot}\;mL^{-1}$로 2001년 9월에 가장 많았다. 이 시기의 우점종은 녹조류인 Schroederia judayi이였으며, 생물량은 20,417 cells ${\cdot}\;mL^{-1}$이였다. 송지호의 수질을 개선하기 위해서는 인위적으로 화학성층을 파괴시켜 심충에 용존산소를 공급시켜야 할 것으로 판단되며, 모래톱으로 인해 막혀져 있는 해수
As the global economy stagnated due to the Corona 19 virus from Wuhan, China, most countries, including the US Federal Reserve System, introduced policies to boost the economy by increasing the amount of money. Most of the stock investors tend to invest only by listening to the recommendations of famous YouTubers or acquaintances without analyzing the financial statements of the company, so there is a high possibility of the loss of stock investments. Therefore, in this research, I have used artificial intelligence deep learning techniques developed under the existing automatic trading conditions to analyze and predict macro-indicators that affect stock prices, giving weights on individual stock price predictions through correlations that affect stock prices. In addition, since stock prices react sensitively to real-time stock market news, a more accurate stock price prediction is made by reflecting the weight to the stock price predicted by artificial intelligence through stock market news text mining, providing stock investors with the basis for deciding to make a proper stock investment.
Ha, You-Min;Kim, Sang-Wook;Park, Sang-Hyun;Lim, Seung-Hwan
The KIPS Transactions:PartD
/
v.16D
no.2
/
pp.169-176
/
2009
Rule discovery is an operation that discovers patterns frequently occurring in a given database. Rule discovery makes it possible to find useful rules from a stock database, thereby recommending buying or selling times to stock investors. In this paper, we discuss storage structures for efficient processing of queries in a system that recommends stock investments. First, we propose five storage structures for efficient recommending of stock investments. Next, we discuss their characteristics, advantages, and disadvantages. Then, we verify their performances by extensive experiments with real-life stock data. The results show that the histogram-based structure improves the query performance of the previous one up to about 170 times.
There are many investors in the stock market, and more and more people get interested in the stock investment. In order to avoid risks and make profit in the stock investment, we have to determine several aspects using various information. That is, we have to select profitable stocks and determine appropriate buying/selling prices and holding period. This paper proposes a data mining tool for the investors' decision support. The data mining tool makes stock investors apply machine learning techniques and generate stock price prediction model. Also it helps determine buying/selling prices and holding period. It supports individual investor's own decision making using past data. Using the proposed tool, users can manage stock data, generate their own stock price prediction models, and establish trading policy via investment simulation. Users can select technical indicators which they think affect future stock price. Then they can generate stock price prediction models using the indicators and test the models. They also perform investment simulation using proper models to find appropriate trading policy consisting of buying/selling prices and holding period. Using the proposed data mining tool, stock investors can expect more profit with the help of stock price prediction model and trading policy validated on past data, instead of with an emotional decision.
Determining the timing of buying and selling in stock investment is one of the most important factors to increase the return on stock investment. Buying low and selling high makes a profit, but buying high and selling low makes a loss. The price is determined by the quantity of buying and selling, which determines the price of a stock, and buying and selling is also related to corporate performance and economic indicators. The fear and greed index provided by CNN uses seven factors, and by assigning weights to each element, the weighted average defined as greed and fear is calculated on a scale between 0 and 100 and published every day. When the index is close to 0, the stock market sentiment is fearful, and when the index is close to 100, it is greedy. Therefore, we analyze the trading criteria that generate the maximum return when buying and selling the US S&P 500 index according to CNN fear and greed index, suggesting the optimal buying and selling timing to suggest a way to increase the return on stock investment.
Korean Journal of Construction Engineering and Management
/
v.11
no.5
/
pp.41-52
/
2010
Even though REITs (Real Estate Investment Trusts) are listed on the stock market, REITs have characteristics that allow them to invest in real estate and financing for real estate development. Therefore REITs is related with stock market and construction business and real estate business. Using time-series analysis, this study analyzed REITs in relation to construction businesses, real estate businesses, and the stock market, and derived influence factor of REITs. We used the VAR (vector auto-regression) and the VECM (vector error correction model) for the time-series analysis. This study classified three steps in the analysis. First, we performed the time-series analysis between REITs and construction KOSPI(The Korea composite stock price index) and the result showed that construction KOSPI influenced REITs. Second, we analyzed the relationship between REITs and construction commencement area of the coincident construction composite index, office index and housing price index in real estate business indexes. REITs and the housing price index influence each other, although there is no causal relationship between them. Third, we analyzed the relationship between REITs and the construction permit area of the leading construction composite index. The construction permit area is influenced by REITs, although there is no causal relationship between these two indexes, REITs influenced the stock market and housing price indexes and the construction permit area of the leading composite index in construction businesses, but exerted a relatively small influence in construction starts coincident with the composite office indexes in this study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.