• 제목/요약/키워드: 주성분

검색결과 2,775건 처리시간 0.028초

Utilizing UPCA and SPCA in Unsupervised Classification Using Landsat TM data

  • Lee, Byung-Gul;Kang, In-Joon
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2003년도 춘계학술발표회 논문집
    • /
    • pp.167-170
    • /
    • 2003
  • 본 연구는 무감독영상해석(Unsupervised Classification)에서 주성분 분석법(Principal Component Analysis)의 응용성을 연구하기 위하여, 주성분 분석법을 K-means, ISODATA 두가지 무감독분류법에 적용하였다. 적용대상지역은 제주도이다. 본 연구에서 주성분 분석 방법중에서 비정규형 주성분 분석방법 (Unstandardized PCA)과 정규형 주성분 분석방법(Standardized PCA) 두가지 경우로 나누어서 각각 연구하였다. 이를 위하여 제주도의 Landsat TM영상과 국토연구원에서 조사한 제주도 식생분류 조사자료와 현장조사 자료 그리고 1/25,000 수치지도를 이용하였다. 그리고 분석된 자료의 정확도를 평가하기 위하여 오차행렬(Error Matrix)을 도입하여 계산하였다. 우선 비정규형 주성분 분석법으로 구한 주성분 영상과 Landsat TM 원래 영상을 오차행렬을 이용하여 제주도의 식생 분류에 각각 적용하였다. 그 결과, K-means 무감독분류법에서는 Landsat TM 자료를 직접 이용한 경우에는 바다와 육상의 분류가 잘 되지 않았으며, 또한 전반적인 영상분류결과가 관측치와 많은 차이를 보였다. 그러나, 주성분 분석법으로 계산된 주성분 영상으로 K-means방법으로 분류 한 결과는 관측치와 잘 일치를 하였다. ISODATA의 경우, Landsat TM 원래영상을 계산하면, K-means으로 분류한 결과보다는 좋은 값을 나타냈으나, 주성분 분석법으로 구한 영상의 계산결과와 비교하면, 주성분 영상으로 구한 분류결과의 정확도가 약 15%정도 높게 나타났다. 정규형 주성분 분석법의 경우를 보면 K-means에서는 Landsat TM원래 자료보다 우수한 결과를 보여주었으나, 비정규형 주성분 분석법으로 계산된 결과보다는 정확도가 다소 떨어지는 단점이 있었고, ISODATA의 경우도 Landsat TM원래 자료보다 약 7%정도의 높은 정확도를 보였으나, 비정규형 영상보다는 약8%정도 낮은 정확도를 보였다. 본 연구에서 주성분 분석법으로 계산된 결과에서 주목되는 것은, 주성분 분석법으로 구한 주성분 영상은 분류방법(K-means, ISODATA, artificial neural networks)에 따라 분류된 결과값이 비슷하게 나타난 반면, Landsat TM원래 자료는 분류방법에 따라 결과값이 많은 차이를 보여 주었다. 그리고 주성분 분석 방법 중에서도 비정규형 주성분 분석법(Unstandardized PCA)이 정규형 주성분 분석법(Standardized PCA)보다 영상분석에서 더 좋은 결과를 보여주는 것으로 나타났다.

  • PDF

주성분분석에 의한 재래종 옥수수의 해석 (Assessment and Classification of Korean Indigenous Corn Lines by Application of Principal Component Analysis)

  • 이인섭;박종옥
    • 생명과학회지
    • /
    • 제13권3호
    • /
    • pp.343-348
    • /
    • 2003
  • 육종재료를 얻기 위하여 부산·경남지역에서 수집된 재래종 옥수수 49 계통을 선발하여 본 실험을 실시하였다. 본 시료는 주성분분석을 이용하여 재래종 옥수수를 해석하고 계통분류를 실시하였던 바 다음과 같은 결과를 얻었다. 7 개의 형질을 이용하여 실시한 주성분분석에서는 제 4주성분까지를 가지고 전체 변동의 86.3%를 설명할 수 있었고, 제 2 주성분까지는 전체 변동의 67.4%를 설명할 수 있었다. 주성분에 대한 형질들의 기여율은 형질에 따라 달랐고 상위 주성분에서 켰으며 하위 주성분에서 작았다. 주성분과 형질과의 상관계수는 주성분의 생물학적 의의와 주성분에 대응한 식물체의 형을 명확히 하였는데 제 1 주성분은 식물체의 크기 및 생장기간에 관련된 주성분이었고, 제2주성분은 이삭수와 분얼수에 관련된 주성분이었다. 제 3주성분과 제 4 주성분에서는 형질간에는 유의성이 인정되지 않았다.

주성분회귀분석에서 주성분선정을 위한 새로운 방법 (Procedure for the Selection of Principal Components in Principal Components Regression)

  • 김부용;신명희
    • 응용통계연구
    • /
    • 제23권5호
    • /
    • pp.967-975
    • /
    • 2010
  • 데이터마이닝 분야에서의 회귀모형에는 연관성이 높은 설명변수들이 포함되어 다중공선성을 유발하는 경우가 많은데, 다중공선성이 야기하는 문제를 해결하기 위하여 주성분회귀분석을 적용할 수 있다. 이 분석에서는 적절한 주성분을 선정하는 과정이 핵심인데, 기존의 선정방법들은 다중공선성을 잘 해결하지 못하거나 모형의 적합성을 저하시킨다는 지적을 받고 있다. 따라서 본 논문에서는 다중공선성 문제와 적합성 저하 현상을 동시에 해결할 수 있는 새로운 선정방법을 제안하였다. 다중공선성에 의해 최소제곱추정량의 분산이 팽창되는 문제를 주성분회귀에 의해 해결할 수 있지만, 주성분의 일부를 선정함에 따라 발생하는 편의도 동시에 통제해야 한다. 따라서 주성분회귀추정량의 평균제곱오차를 최소가 되게 하는 상태지수를 측정하고, 이 값에 영향을 미치는 주요 요인들을 컨조인트분석에 의해 파악하여 주성분 선정기준 모형을 구축하였다. 선정기준의 상한과 하한을 설정하고, 상태지수가 상한을 초과하면 해당 주성분을 제외시키고, 하한에 미달하면 해당 주성분을 포함시킨다. 그리고 상한과 하한 사이의 상태지수에 대응하는 주성분들에 대해서는 일반화선형검정을 순차적으로 적용하여 주성분을 선정하는 방법이다.

위성 영상데이터의 주성분변환 및 주성분 기반 영상분류 (Principal Component Transformation of the Satellite Image Data and Principal-Components-Based Image Classification)

  • 서용수
    • 한국지리정보학회지
    • /
    • 제7권4호
    • /
    • pp.24-33
    • /
    • 2004
  • 원격탐사(remote sensing) 기술의 비약적인 발전과 함께 위성 영상데이터의 분광대역수가 급속히 증가하고 있다. 대역수의 증가로 영상데이터량이 급격히 증가하게 되고, 이에 따라 이들 데이터를 처리하기 위해서는 처리속도가 빠른 영상처리 기술이 필요하게 되었다. 분광 대역 수를 줄여 빠르게 처리하는 한가지 방법으로 널리 사용되고 있는 것이 주성분 변환법이다. 본 논문에서는 주성분 변환법에 대한 처리과정에 대해 논하였으며, 위성 영상데이터를 주성분 변환한 결과인 주성분 영상데이터를 분석하였다. 분석결과 실험 영상데이터의 경우, 3개의 주성분($PC_1$, $PC_2$, $PC_3$)의 누적 백분율 분산 값이 99.1%로 이는 3개의 주성분이 거의 대부분의 정보를 가지고 있음을 알 수 있었다. 3개의 주성분 영상데이터만을 사용한다면 데이터 저장을 위한 메모리 용량이나 데이터 전송시간 및 처리시간을 크게 감소시킬 수 있다. 또한 본 논문에서는 주성분 영상데이터를 최대유사분류법과 신경회로망을 이용한 다층 퍼셉트론 분류법으로 분류하고 결과를 평가한 후, 주성분 변환법이 갖는 차원축소 효과를 분석하였다. 분석결과 주성분 3개를 사용한 분류결과와 주성분 6개를 사용한 분류결과간의 분류정답률이 크게 차이가 나지 않았다. 이는 분류에 사용하는 영상데이터 수를 6개 차원에서 3개 차원으로 줄여도 비슷한 분류성능을 얻을 수 있음을 확인할 수 있었다.

  • PDF

적응적 상관도를 이용한 주성분 변수 선정에 관한 연구 (A Study on Selecting Principle Component Variables Using Adaptive Correlation)

  • 고명숙
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권3호
    • /
    • pp.79-84
    • /
    • 2021
  • 고차원의 데이터를 처리하기 위해서는 데이터의 성질을 유지하면서 특징을 잘 반영할 수 있는 특징 추출 방법이 필요하다. 주성분분석 방법은 고차원 데이터에 포함된 정보를 저차원의 데이터로 변환하여 원래 데이터의 변수 수보다 적은 수의 변수로 고차원 데이터를 표현 할 수 있는 방법으로서 데이터의 특징 추출을 위한 대표적인 방법이다. 본 연구에서는 데이터가 고차원인 경우 데이터 특징 추출을 위한 주성분 분석에 있어서 주성분 변수 선정 시 적응적 상관도를 기반으로 한 주성분 분석 방법을 제안한다. 제안하는 방법은 입력 데이터간의 상관 관계를 기반으로 상관도를 적응적으로 반영하여 데이터의 주성분을 분석함으로써 다른 여러 변수에 중복적으로 상관도가 높은 변수와 주성분을 유도하는데 연관성이 적은 변수를 주성분 변수 후보 대상에서 제외시키고자 한다. 고유벡터 계수 값에 의한 주성분 위계를 분석하고 위계가 낮은 주성분이 변수로 선정이 되는 것을 막고 또한 상관 분석을 통하여 데이터의 중복 발생이 데이터 편향을 유도하는 것을 최소화하 하고자 한다. 이를 통하여 주성분 변수 선정 시 데이터 편향성의 영향을 줄임으로써 실제 데이터의 특징을 잘 나타내는 주성분 변수를 선정하는 방법을 제안하고자 한다.

대용량 문서분류에서의 비선형 주성분 분석을 이용한 특징 추출 (Feature Selection with Non-linear PCA in Text Categorization)

  • 신형주;장병탁;김영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.146-148
    • /
    • 1999
  • 문서분류의 문제점 중의 하나는 사용하는 데이터의 차원이 매우 크다는 것이다. 그러므로 문서에서 필요한 단어만을 자동적으로 추출하여 문서데이터의 차원을 축소하는 작업이 문서분류에서는 필수적이다. DF(Document Frequency)는 문서의 차원축소의 대표적인 통계적 방법 중 하나인데, 본 논문에서는 문서의 차원축소에 DF와 주성분 분석(PCA)을 비교하여 주성분 분석이 문서의 차원축소에 적합함을 실험적으로 보인다. 그리고 비선형 주성분 분석(nonlinear PCA) 방법 중 locally linear PCA와 kenel PCA를 적용하여 비선형 주성분 분석을 이용하여 문서의 차원을 줄이는 것이 선형 주성분 분석을 이용하는 것 보다 문서분류에 더 적합함을 실험적으로 보인다.

  • PDF

다중분광 영상데이터의 주성분변환에 관한 연구 (A Study on the Principal Component Transformation of the Multispectral Image Data)

  • 서용수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 신호처리소사이어티 추계학술대회 논문집
    • /
    • pp.389-392
    • /
    • 2003
  • 원격감지(remote sensing) 기술의 비약적인 발전과 함께 다중분광 영상데이터의 분광대역수가 급속히 증가하고 있다. 대역수의 증가로 영상데이터의 양이 급격히 증가하게 되고, 이에 따라 이들 데이터를 처리하기 위해서는 처리속도가 빠른 영상 처리 기술이 필요하게 되었다. 분광 대역수를 줄여 빠르게 처리하는 한가지 방법으로 널리 사용되고 있는 것이 주성분변환이다. 본 논문에서는 주성분변환에 대한 처리방법에 대해 논한 후, 다중분광 영상데이터를 주성분 변환한 주성분 영상데이터를 분석하였다. 또한 주성분 영상데이터를 최대유사법으로 분류하고 그 결과를 분석하였다.

  • PDF

적응적 상관도를 이용한 주성분 분석에 관한 연구 (A Study on PCA using Adaptive Correlation)

  • 고명숙
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.13-14
    • /
    • 2020
  • 고차원의 데이터를 처리하기 위해서는 데이터의 성질을 유지하면서 특징을 잘 반영할 수 있는 특징 추출 방법이 필요하며 주성분분석 방법은 대표적인 특징 추출 방법이다. 본 연구에서는 데이터가 고차원인 경우 데이터 특징 추출을 위한 주성분 분석의 주성분 변수 선정시 적응적 상관도(Correlation)를 기반으로 한 주성분 분석 방법을 제안한다. 제안하는 방법은 입력 데이터간의 상관관계를 기반으로 상관도를 적응적으로 반영하여 데이터의 주성분을 분석함으로써 실제 데이터의 특징을 나타내는 세분화 변수 선정 시 데이터 편향성의 영향을 줄이기 위한 방법이다.

한국산 광의의 붉나무속(Rhus L. sensu lato)의 수리분류학적 연구 (Numerical taxonomy of Rhus sensu lato (Anacardiaceae) in Korea)

  • 도재화;김주환
    • 식물분류학회지
    • /
    • 제34권3호
    • /
    • pp.205-220
    • /
    • 2004
  • 한국산 광의의 붉나무속(Rhus) 6분류군간의 한계를 검토하기 위하여 28집단에 대한 67개의 외부형태학적 형질을 기초로 주성분분석과 군집분석의 수리분류학적 연구를 실시하였다. 47개의 정량형질을 기초로 한 주성분분석 결과에서는, 주성분 1, 2, 3이 전체분산값의 77.9%(주성분1 35.2%, 주성분2 22.5%, 주성분3 20.2%), 또한 20개의 정성형질을 기초로 한 분석결과에서는, 주성분 1, 2, 3은 전체분산에 대해 90.7%(주성분1 37.7%, 주성분2 33.0%. 주성분3 20.0%)를 설명 할 수 있는 것으로 나타났다. 주성분적재값을 기초로 하여 공간배열을 실시한 결과, 조사된 분류군들은 종집단 간에 뚜렷한 한계를 보이며 유집되었다. 또한, 단순유집계수에 의한 군집분석을 수행하여 UPGMA 표현도를 작성한 결과, 각각의 분류군 사이에는 뚜렷한 한계를 보였다. 군집분석 결과, 한국산 광의의 붉나무속 식물의 분류에는 정성적 형질이 유용한 것으로 나타났으며, 수리분류학적 연구는 한국산 광의의 붉나무속 6분류군의 분류학적 한계설정에 매우 유용한 것으로 나타났다.

주성분분석을 이용한 간선도로 구간 별 차량 당 CO2 다량 배출구간 평가 (Assessment of CO2 Emissions of Vehicles in Highway Sections Using Principal Component Analysis)

  • 이윤석;김다예;오흥운
    • 대한토목학회논문집
    • /
    • 제33권5호
    • /
    • pp.1981-1987
    • /
    • 2013
  • 차량의 $CO_2$ 배출량은 통행속도에 따라 다르게 나타난다. 또한, 차량의 통행속도는 도로의 종류나 위치, 시간대, 교통량 등에 따라 다르게 나타난다. 본 논문에서는 주성분분석(PCA : Principal Component Analysis)을 이용하여 간선도로 구간 별 시간대 별로 차량 당 $CO_2$ 다량 배출구간을 판별하여 평가하였다. 분석 결과, 주성분분석 결과 제 1주성분과 제 2주성분으로 성분이 구분되는 것을 알 수 있었고 시간대가 각 주성분을 설명할 수 있는 주요 성분임을 알 수 있었다. 제 1주성분의 경우 새벽시간대와 오후시간대로 주성분을 설명할 수 있었다. 제 2주성분의 경우 오전, 오후 첨두시 시간대로 주성분을 설명할 수 있었다. 그리고 주성분 점수를 산출하여 분석한 결과 제 1주성분의 경우 새벽시간대에도 정체현상이 지속되는 잠원IC~한남대교 구간이 타 구간에 비해 주성분 점수가 높게 나타났고 제 2주성분의 경우 오전,오후 첨두시의 정체현상이 극심한 서울시 접속부와의 이격이 가까운 구간에서 주성분 점수가 높게 나타났다. 결과적으로 주성분 점수를 통하여 차량 당 $CO_2$ 다량 배출 구간을 판별할 수 있었다.