• Title/Summary/Keyword: 주성분회귀

Search Result 159, Processing Time 0.031 seconds

Study on the Local Factors Affecting Availability of Car-Sharing in Seoul (서울시의 카셰어링 이용도에 대한 지역적 요인특성분석)

  • Choi, Hyunsu;Park, Juntae
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.5
    • /
    • pp.381-389
    • /
    • 2014
  • This research focuses on the current trend of 'Sharing Transportation' to clarify the regional factors having a decisive effect on the use of Car Sharing. To accomplish this, the current research is built a Database of the regional characteristics of Car Sharing spots based on railway stations in Seoul and performed an analysis of the primary regional factors affecting Car Sharing usage. As a result, we found conclusive factors affecting the use of Car Sharing. This research can be utilized for establishing strategies and effective measures to support the use of Car Sharing and sustainable development with respect to issues of motorization.

Suggestion of starting pitcher ability index in Korea baseball - Focusing on the sabermetrics statistics WAR (한국프로야구에서 선발투수의 투수능력지수 제안 - 대체선수대비승수 (WAR)을 중심으로)

  • Kim, Hyeon-Gyu;Lee, Jea-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.863-874
    • /
    • 2017
  • Wins above replacement (WAR) is the most commonly used statistics of the many sabermetrics that measure baseball players' abilities. The advantage of a WAR is that it enables to compare performances of players even though they have different roles such as pitcher and hitter. However, WAR is difficult to obtain with common records. Thus, in this paper, we have calculated the sabermetrics variable based on Korean professional baseball records for the past three years (2014-2016). Using these variables, we suggest starting pitcher ability index that can replace WAR. Starting pitcher ability index was calculated by means of arithmetic mean, weighted average and principal component regression. Then, compared to the WAR, the most relevant method was selected, which would be useful to identify for the starting pitcher ability.

Damage Prediction Using Heavy Rain Risk Assessment (호우 위험도 평가를 이용한 피해예측)

  • Kim, Jong Sung;Choi, Chang Hyun;Lee, Jong So;Kim, Hung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.154-154
    • /
    • 2017
  • 전 세계적인 기후변동과 기후변화의 영향으로 대규모 인명 및 재산피해를 유발하는 자연재난의 빈도와 강도가 증가하고 있다. 이렇게 변화하는 상황에서 효율적인 대책을 수립하기 위해서는 재해에 노출된 특성을 지역적 특성과 함께 고려하여 지역별로 재해에 위험한 정도를 평가하는 것이 선행되어지고, 재난 피해 발생전에 피해 지역 및 범위를 예측하는 것이 필요하다고 판단된다. 따라서 본 연구에서는 국내 자연재난 피해의 65% 이상을 차지하는 호우피해를 대상으로 PSR(Pressure-State-Response) 구조를 이용하여 호우피해위험지수(Heavy rain Damage Risk Index, HDRI)를 제안하여 호우 위험도를 평가하고자하였다. 또한 도출된 지역별 위험등급에 따른 호우피해 예측함수를 개발하여 재해발생 전에 개략적인 피해의 범위를 예측하고자 하였다. 먼저 지역별 호우 위험도 평가를 위해 압력지표, 현상지표, 대책지표를 구축하고, 주성분분석을 이용하여 평가지표를 결정하였다. 결정된 평가지표를 동일한 가중치를 부여하여 호우피해위험지수를 도출하였다. 분석결과, 경기도 31개 지자체 중에서 가장 안전한 1등급인 지자체는 15개의 지자체로 나타났으며, 2등급인 지자체는 7개, 3등급인 지자체는 9개로 분류되었다. 지자체별 호우 위험도 등급에 따라서 재해기간별 총강우량, 재해일수, 선행강우량(1~5일), 지속시간별 최대강우량(1~24시간) 등의 자료를 설명변수로 구축하였고, 다중회귀모형과 주성분분석을 활용하여 예측함수를 개발하였다. 등급별 호우피해 예측함수는 N-RMSE가 12~18%로 호우피해를 적절하게 예측하는 것으로 평가되었다. 본 연구를 통해 지자체별 호우피해위험도 등급을 파악 할 수 있으며, 평가된 호우피해위험도 등급별로 호우피해 예측함수 개발을 통해 사전에 호우피해 발생 및 규모를 파악할 수 있게 되었다. 따라서 본 연구의 결과는 각 지자체 및 관련 부처에서 효과적인 방재체계를 수립하는데 있어 기초자료로 활용될 수 있을 것으로 판단된다.

  • PDF

Classical testing based on B-splines in functional linear models (함수형 선형모형에서의 B-스플라인에 기초한 검정)

  • Sohn, Jihoon;Lee, Eun Ryung
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.4
    • /
    • pp.607-618
    • /
    • 2019
  • A new and interesting task in statistics is to effectively analyze functional data that frequently comes from advances in modern science and technology in areas such as meteorology and biomedical sciences. Functional linear regression with scalar response is a popular functional data analysis technique and it is often a common problem to determine a functional association if a functional predictor variable affects the scalar response in the models. Recently, Kong et al. (Journal of Nonparametric Statistics, 28, 813-838, 2016) established classical testing methods for this based on functional principal component analysis (of the functional predictor), that is, the resulting eigenfunctions (as a basis). However, the eigenbasis functions are not generally suitable for regression purpose because they are only concerned with the variability of the functional predictor, not the functional association of interest in testing problems. Additionally, eigenfunctions are to be estimated from data so that estimation errors might be involved in the performance of testing procedures. To circumvent these issues, we propose a testing method based on fixed basis such as B-splines and show that it works well via simulations. It is also illustrated via simulated and real data examples that the proposed testing method provides more effective and intuitive results due to the localization properties of B-splines.

Analysis of Varietal Variation in Alkali Digestion of Milled Rice at Several Levels of Alkali Concentration (쌀의 KOH 농도별 붕괴양상에 따른 품종변이 해석)

  • 최해춘;손영희
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.1
    • /
    • pp.31-37
    • /
    • 1993
  • To analyze and classify the varietal variation of alkali digestibility in detail, which is closely connected with the gelatinization temperature and physical characteristics of cooked rice, the patterns of alkali decomposition changed along the alkali concentration were investigated for thirty three Korean leading rice cultivars and new breeding lines(japonica : 25, Tongil-type:8) including five glutinous rice. Principal component analysis was used to condense the information and to classify rice materials according to decomposed reaction pattern at several levels of potassium hydroxide(KOH) concentration. Thirty three rice varieties were classified largely into four groups by the distribution on the plane of upper two principal component scores which contained above 92% of total informations. Group I was consisted of one variety, Dobongbyeo, which owned almost same strong resistance to alkali digestion at the range of 0.8% to 1.6% KOH solutions. Group II included three japonica and Tongil-type glutinous rice varieties, which revealed medium alkali digestion value(ADV) at 1.4% KOH solution and intermediate change in ADV from 0.8% to 1.6% KOH solutions. Most of Tongil-type and early-maturity japonica rice, which exhibited medium-high ADV at 1.4% of KOH concentration and large ADV difference between low and high alkali solutions, were contained in Group III. Group N included most of medium or medium-late-maturity japonica, which showed high ADV at 1.4% KOH and medium or intermediate-high ADV change between low and high alkali solutions. The 1st principal component indicated the average index of ADV through 0.8-1.6% KOH solutions and the 2nd principal component pointed out the factor related with ADV difference between low and high alkali solutions or regression coefficients of ADV change along with the KOH concentrations.

  • PDF

A Study on the Prediction of Fuel Consumption of a Ship Using the Principal Component Analysis (주성분 분석기법을 이용한 선박의 연료소비 예측에 관한 연구)

  • Kim, Young-Rong;Kim, Gujong;Park, Jun-Bum
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.335-343
    • /
    • 2019
  • As the regulations of ship exhaust gas have been strengthened recently, many measures are under consideration to reduce fuel consumption. Among them, research has been performed actively to develop a machine-learning model that predicts fuel consumption by using data collected from ships. However, many studies have not considered the methodology of the main parameter selection for the model or the processing of the collected data sufficiently, and the reckless use of data may cause problems such as multicollinearity between variables. In this study, we propose a method to predict the fuel consumption of the ship by using the principal component analysis to solve these problems. The principal component analysis was performed on the operational data of the 13K TEU container ship and the fuel consumption prediction model was implemented by regression analysis with extracted components. As the R-squared value of the model for the test data was 82.99%, this model would be expected to support the decision-making of operators in the voyage planning and contribute to the monitoring of energy-efficient operation of ships during voyages.

Analysis and Classification of Acoustic Emission Signals During Wood Drying Using the Principal Component Analysis (주성분 분석을 이용한 목재 건조 중 발생하는 음향방출 신호의 해석 및 분류)

  • Kang, Ho-Yang;Kim, Ki-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.254-262
    • /
    • 2003
  • In this study, acoustic emission (AE) signals due to surface cracking and moisture movement in the flat-sawn boards of oak (Quercus Variablilis) during drying under the ambient conditions were analyzed and classified using the principal component analysis. The AE signals corresponding to surface cracking showed higher in peak amplitude and peak frequency, and shorter in rise time than those corresponding to moisture movement. To reduce the multicollinearity among AE features and to extract the significant AE parameters, correlation analysis was performed. Over 99% of the variance of AE parameters could be accounted for by the first to the fourth principal components. The classification feasibility and success rate were investigated in terms of two statistical classifiers having six independent variables (AE parameters) and six principal components. As a result, the statistical classifier having AE parameters showed the success rate of 70.0%. The statistical classifier having principal components showed the success rate of 87.5% which was considerably than that of the statistical classifier having AE parameters.

Detecting Influential Observations in Multivariate Statistical Analysis of Incomplete Data by PCA (주성분분석에 의한 결손 자료의 영향값 검출에 대한 연구)

  • 김현정;문승호;신재경
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.383-392
    • /
    • 2000
  • Since late 1970, methods of influence or sensitivity analysis for detecting influential observations have been studied not only in regression and related methods but also in various multivariate methods. If results of multivariate analyses sometimes depend heavily on a small number of observations, we should be very careful to draw a conclusion. Similar phenomena may also occur in the case of incomplete data. In this research we try to study such influential observations in multivariate statistical analysis of incomplete data. Case of principal component analysis is studied with a numerical example.

  • PDF

Synthetic data generation by probabilistic PCA (주성분 분석을 활용한 재현자료 생성)

  • Min-Jeong Park
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.4
    • /
    • pp.279-294
    • /
    • 2023
  • It is well known to generate synthetic data sets by the sequential regression multiple imputation (SRMI) method. The R-package synthpop are widely used for generating synthetic data by the SRMI approaches. In this paper, I suggest generating synthetic data based on the probabilistic principal component analysis (PPCA) method. Two simple data sets are used for a simulation study to compare the SRMI and PPCA approaches. Simulation results demonstrate that pairwise coefficients in synthetic data sets by PPCA can be closer to original ones than by SRMI. Furthermore, for the various data types that PPCA applications are well established, such as time series data, the PPCA approach can be extended to generate synthetic data sets.

Asymptotic Test for Dimensionality in Sliced Inverse Regression (분할 역회귀모형에서 차원결정을 위한 점근검정법)

  • Park, Chang-Sun;Kwak, Jae-Guen
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.2
    • /
    • pp.381-393
    • /
    • 2005
  • As a promising technique for dimension reduction in regression analysis, Sliced Inverse Regression (SIR) and an associated chi-square test for dimensionality were introduced by Li (1991). However, Li's test needs assumption of Normality for predictors and found to be heavily dependent on the number of slices. We will provide a unified asymptotic test for determining the dimensionality of the SIR model which is based on the probabilistic principal component analysis and free of normality assumption on predictors. Illustrative results with simulated and real examples will also be provided.