• Title/Summary/Keyword: 주성분분석기법

Search Result 336, Processing Time 0.039 seconds

Application of Sensor Fault Detection Scheme Based on AANN to Risk Measurement System (AANN-기반 센서 고장 검출 기법의 방재시스템에의 적용)

  • Kim Sung-Ho;Lee Young-Sam
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.2
    • /
    • pp.92-96
    • /
    • 2006
  • NLPCA(Nonlinear Principal Component Analysis) is a novel technique for multivariate data analysis, similar to the well-known method of principal component analysis. NLPCA operates by a feedforward neural network called AANN(Auto Associative Neural Network) which performs the identity mapping. In this work, a sensor fault detection system based on NLPCA is presented. To verify its applicability, simulation study on the data supplied from risk management system is executed.

Performance Comparison of Data Mining Approaches for Prediction Models of Near Infrared Spectroscopy Data (근적외선 분광 데이터 예측 모형을 위한 데이터 마이닝 기법의 성능비교)

  • Baek, Seung Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.311-315
    • /
    • 2013
  • 본 논문에서는 주성분 회귀법과 부분최소자승 회귀법을 비교하여 보여준다. 이 비교의 목적은 선형형태를 보유한 근적외선 분광 데이터의 분석에 사용할 수 있는 적합한 예측 방법을 찾기 위해서이다. 두 가지 데이터 마이닝 방법론인 주성분 회귀법과 부분최소자승 회귀법이 비교되어 질 것이다. 본 논문에서는 부분최소자승 회귀법은 주성분 회귀법과 비교했을 때 약간 나은 예측능력을 가진 결과를 보여준다. 주성분 회귀법에서 50개의 주성분이 모델을 생성하기 위해서 사용지만 부분최소자승 회귀법에서는 12개의 잠재요소가 사용되었다. 평균제곱오차가 예측능력을 측정하는 도구로 사용되었다. 본 논문의 근적외선 분광데이터 분석에 따르면 부분최소자승회귀법이 선형경향을 가진 데이터의 예측에 가장 적합한 모델로 판명되었다.

Study on SOH estimation and extraction of degradation parameter based on principal component analysis for high energy battery pack (주성분분석(PCA)기반 고용량 배터리팩의 열화 인자 추출 방법 및 SOH 추정 기법 연구)

  • Lee, Pyeong-Yeon;Lee, Seong-Jun;Song, Hyeon-Cheol;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.59-61
    • /
    • 2019
  • 고용량 어플리케이션의 높은 신뢰성을 만족하기 위해 배터리 열화에 영향을 미치는 다양한 변수가 고려되어야 하며, 24S1P의 배터리팩을 사용하여 전기적 노화를 수행하였다. 주성분 분석을 통해 열화에 상관성이 있는 변수인 용량, 내부 저항, 셀간 전압 편차, 최대 온도, 만방에서의 최소 전압 등을 설명하는 새로운 열화의 변수를 추출하였다. 열화 변수를 사용하여 설계한 SOH 추정 기법을 비교 및 검증한다.

  • PDF

Selection of variables for regional precipitation frequency analysis using multivariate analysis (다변량 분석을 활용한 강우지역빈도해석의 지역구분인자 선정에 관한 연구)

  • Nam, Woo-Sung;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.710-714
    • /
    • 2006
  • 지역빈도해석기법은 수문학적으로 성질이 유사한 지점을 하나의 군으로 구성한 자료를 이용해서 빈도해석을 하는 기법으로, 지점빈도해석이 가질 수 있는 단점들을 보완하기 위한 방안의 하나로 기대되고 있다. 본 논문은, 지역빈도해석기법을 적용하기 위한 단계중의 하나인 군집해석에 사용되는 변수들을 보다 효율적으로 선택하기 위한 연구로서, 다변량 분석방법인 주성분분석과 요인분석, 그리고, 변수선택을 위한 Procrustes Analysis를 통해서 보다 효율적으로 변수를 선택하는 방법을 제안하기 위한 연구이다.

  • PDF

Temperature Compensation Using Principal Component Analysis for Impedance-based Structural Health Monitoring (주성분 분석을 이용한 임피던스 기반 구조물 건전성 모니터링의 온도보상기법)

  • Shim, Hyo-Jin;Min, Ji-Young;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.32-35
    • /
    • 2011
  • 전기역학적 임피던스(electromechanical impedance)를 이용한 구조물 건전성 모니터링(structural health monitoring; SHM) 기술은 구조물의 주요 부재에 압전센서를 부착하여 이로부터 획득한 임피던스 신호의 변화를 관찰함으로써 구조물의 국부적 상태를 실시간으로 진단하는 것이다. 임피던스는 손상뿐만 아니라 외부 온도에도 민감하게 반응하기 때문에 구조물 진단 결과에 상당한 오차를 유발할 수 있으므로 이에 대한 보상을 수행해야 한다. 따라서 본 논문에서는 온도변화가 임피던스 기반 진단 결과에 미치는 영향을 PZT 센서를 사용하여 실험적으로 연구하였다. 리액턴스(reactance)의 주성분 분석(Principal Component Analysis; PCA)을 통해 도출된 첫번째 주성분과 저항(resistance)으로부터 계산된 손상지수 사이의 관계를 분석함으로써, 온도변화에 의해 구별되지 않았던 손상을 보다 확연하게 구별 할 수 있음을 확인하였다.

  • PDF

Photomosaics Using Principal Component Analysis (주성분 분석을 사용한 포토모자이크)

  • Chun, Young-Jae;Oh, Kyoung-Su;Cho, Sung-Hyun
    • Journal of Korea Game Society
    • /
    • v.11 no.1
    • /
    • pp.139-146
    • /
    • 2011
  • We propose a photomosaic method using PCA(Principal Component Analysis), which uses PCA results to find the most similar candidate fast and correctly. When two images are projected onto a certain principal component, if their coefficients are similar, they are also likely to be similar. Thus our photomosaic method using PCA can take care of both colors and shapes of images. Our method using coefficient comparison is faster than the one using all color comparison and more correct than the one using average comparison. Our hardware accelerated photomosaic algorithm can handle video images in real-time.

Biometrics Based on Multi-View Features of Teeth Using Principal Component Analysis (주성분분석을 이용한 치아의 다면 특징 기반 생체식별)

  • Chang, Chan-Wuk;Kim, Myung-Su;Shin, Young-Suk
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.4
    • /
    • pp.445-455
    • /
    • 2007
  • We present a new biometric identification system based on multi-view features of teeth using principal components analysis(PCA). The multi-view features of teeth consist of the frontal view, the left side view and the right side view. In this paper, we try to stan the foundations of a dental biometrics for secure access in real life environment. We took the pictures of the three views teeth in the experimental environment designed specially and 42 principal components as the features for individual identification were developed. The classification for individual identification based on the nearest neighbor(NN) algorithm is created with the distance between the multi-view teeth and the multi-view teeth rotated. The identification performance after rotating two degree of test data is 95.2% on the left side view teeth and 91.3% on the right side view teeth as the average values.

  • PDF

Text Summarization using PCA and SVD (주성분 분석과 비정칙치 분해를 이용한 문서 요약)

  • Lee, Chang-Beom;Kim, Min-Soo;Baek, Jang-Sun;Park, Hyuk-Ro
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.725-734
    • /
    • 2003
  • In this paper, we propose the text summarization method using PCA (Principal Component Analysis) and SVD (Singular Value Decomposition). The proposed method presents a summary by extracting significant sentences based on the distances between thematic words and sentences. To extract thematic words, we use both word frequency and co-occurence information that result from performing PCA. To extract significant sentences, we exploit Euclidean distances between thematic word vectors and sentence vectors that result from carrying out SVD. Experimental results using newspaper articles show that the proposed method is superior to the method using either word frequency or only PCA.

Identification of Homogeneous Regions based on Multivariate Techniques (다변량 분석 기법을 활용한 동질 지역 구분)

  • Nam, Woo-Sung;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1568-1572
    • /
    • 2007
  • 지역빈도해석은 우리나라와 같이 자료 기간이 짧은 경우 지점빈도해석보다 더 정확한 확률강우량을 산정할 수 있는 기법이다. 지역빈도해석을 통한 확률강우량 산정 결과는 수문학적으로 동질한 지역의 구분 결과에 따라 달라진다. 지역을 구분할 때에는 강우에 영향을 미치는 다양한 변수들이 사용될 수 있다. 변수의 유형과 개수가 지역 구분의 효율성을 좌우하기 때문에 활용 가능한 모든 변수들의 정보를 요약할 수 있는 변수들을 선택하는 것이 지역 구분의 효율성 면에서 유리하다고 할 수 있다. 이런 면에서 지역 구분의 효율성을 증대시킬 목적으로 다변량 분석 기법이 활용될 수 있다. 본 연구에서는 주성분 분석, 요인 분석, Procrustes analysis와 같은 다변량 분석 기법을 활용하여 42개의 강우 관련 변수들을 33개의 변수로 줄일 수 있었다. 분석 결과 변수 개수 감소로 인한 정보 손실은 크지 않은 것으로 나타났다. 따라서 이러한 기법에 의한 변수 차원의 축소는 지역 구분의 효율성 향상에 기여할 수 있는 것으로 판단된다. 선정된 변수들을 바탕으로 군집해석을 수행하여 지역을 구분하였고, L-모멘트에 근거한 이질성척도(H)를 활용하여 구분된 지역의 동질성을 검토하였다. 또한 L-모멘트에 근거한 적합성 척도(Z)를 적용하여 구분된 지역에 적합한 확률분포형을 선정하였고, 선정된 적정 확률분포형을 바탕으로 각 지역에 대한 성장 곡선(growth curve)을 유도하였다.

  • PDF

Nonlinear Feature Extraction using Class-augmented Kernel PCA (클래스가 부가된 커널 주성분분석을 이용한 비선형 특징추출)

  • Park, Myoung-Soo;Oh, Sang-Rok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.7-12
    • /
    • 2011
  • In this papwer, we propose a new feature extraction method, named as Class-augmented Kernel Principal Component Analysis (CA-KPCA), which can extract nonlinear features for classification. Among the subspace method that was being widely used for feature extraction, Class-augmented Principal Component Analysis (CA-PCA) is a recently one that can extract features for a accurate classification without computational difficulties of other methods such as Linear Discriminant Analysis (LDA). However, the features extracted by CA-PCA is still restricted to be in a linear subspace of the original data space, which limites the use of this method for various problems requiring nonlinear features. To resolve this limitation, we apply a kernel trick to develop a new version of CA-PCA to extract nonlinear features, and evaluate its performance by experiments using data sets in the UCI Machine Learning Repository.