• 제목/요약/키워드: 주성분분석기법

검색결과 336건 처리시간 0.054초

Contourlet 변환 몇 PCA에 의한 얼굴인식 (Face Recognition using Contourlet Transform and PCA)

  • 권석영;송창규;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.279-282
    • /
    • 2007
  • 본 논문에서는 컨투어렛과 주성분분석기법을 이용한 융합기법에 의한 얼굴인식 시스템을 제안한다. 제안된 방법은 우선적으로 컨투어렛변환에 의해 얼굴영상을 대역별, 방향성분별로 분해한 후, 주성분분석기법을 이용하여 방향성분별로 분할된 부영상에서 특징벡터를 각각 추출한다. 최종 단계에서는 각각의 대역별로 산출된 매칭도를 효과적으로 융합할 수 있는 융합기법을 이용하여 얼굴인식이 수행된다. 제안된 방법의 유용성을 보이기 위해 ORL 얼굴데이터베이스를 대상으로 실험하여 기존 방법인 PCA나 웨이블렛변환을 이용한 방법에 비해 향상된 결과를 보임을 확인한다.

  • PDF

PCA 기법을 이용한 폐탄광 지역의 지반침하 관련 요인 추출 (Extract the main factors related to ground subsidence near abandoned underground coal mine using PCA)

  • 최종국;김기동
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 춘계학술대회 논문집
    • /
    • pp.301-304
    • /
    • 2007
  • 본 연구에서는 폐탄광 지역에서 발생하는 지반침하에 영향을 주는 주요 요인들을 추출하기 위하여 다변량 통계분석 방법의 하나인 주성분분석(Principle Component Analysis : PCA)기법과 지리정보시스템 (Geographic Information System : GIS)을 이용하였다. 이를 위해 연구지역에서 수행한 지표지질조사, 정밀조사, 실내암석시험 등으로부터 취득된 자료를 데이터베이스로 구축하고, 지반침하 위험지역 분포를 공간적으로 해석할 수 있는 지질, 토지이용, 경사도, 지표로부터 지하 갱도까지의 심도, 갱도의 지표상 위치로부터의 수평거리, 지하수심도, 투수계수, RMR(Rock Mass Rating) 값을 분석대상으로 선정하였다. 각 요인들이 연구지역 전체에 걸쳐 분포하도록 GIS의 공간분석 기법의 하나인 표면분석(Surface Analysis), 버퍼링기법(Buffering) 및 내삽법(Interpolation)을 이용하여 래스터 데이터베이스로 구축하고 이로부터 추출된 자료들을 입력값으로 하는 주성분분석을 수행하였다. 주성분분석 결과 폐탄광 지역의 지반침하에 영향을 주는 주요인을 추출하는 것이 가능하였으며, 연구지역은 지질 및 지반강도 관련 요인이 침하발생의 가장 큰 요인인 것으로 분석되었다.

  • PDF

고차원을 갖는 생체 스펙트럼 데이터의 특징추출 및 분류기법 (Feature Extraction and Classification of High Dimensional Biomedical Spectral Data)

  • 조재훈;박진일;이대종;전명근
    • 한국지능시스템학회논문지
    • /
    • 제19권3호
    • /
    • pp.297-303
    • /
    • 2009
  • 본 논문에서는 비선형 변환에 의해 입력신호를 고차원의 확장공간으로 변환한 후, 주성분분석기법(PCA)에 의해 신호의 특징을 추출하는 기법을 제안한다. 특징추출을 위해 사용되는 기존의 주성분분석기법은 입력데이터가 비선형 특성을 갖는 경우 최적의 변환행렬을 구할 수 없다는 문제점을 가지고 있다. 이러한 문제점을 해결하기 위해, 확장공간상에서 구간별로 입력데이터를 분할한 후 주성분분석기법에 의해 구간별 특징을 추출하는 서브패턴기반 주성분분석기법(SpPCA)을 적용하였다. 다음 단계인 분류단계에서는 MLP 비선형분류기를 이용하여 구간마다 추출된 특징벡터를 이용하여 기준패턴과의 유사도를 산출한다. 최종 분류단계에서는 MLP에 의해서 산출된 유사도에 기반을 둔 융합법칙에 의하여 생체 스펙트럼 패턴을 분류한다. 제안된 방법의 유용성을 보이기 위한 실험결과에서 기존의 방법들에 비해서 향상된 인식결과를 보임을 확인하였다.

점진적인 주성분분석기법을 이용한 고차원 자료의 특징 추출 (Feature Extraction on High Dimensional Data Using Incremental PCA)

  • 김병주
    • 한국정보통신학회논문지
    • /
    • 제8권7호
    • /
    • pp.1475-1479
    • /
    • 2004
  • 고차원 자료를 효율적으로 처리하기 위해서는 특징 추출 기법이 필요하다. 주성분분석 방법은 대표적인 특징추출 방법이지만 학습 자료의 차원이 큰 경우에는 고유공간을 계산하기 위해 많은 기억공간과 계산량을 필요로 한다. 본 논문에서는 고차원 자료의 특징 추출을 위해 점진적인 주성분분석 방법을 사용한다. 제안한 방법에 대해 신경망에서 점진적인 주성분분석을 하는 대표적인 방법인 APEX모델과 실험을 통해 비교해 본 결과 제안된 방법이 APEX 모델 보다 성능이 우수함을 나타내었다.

선형판별분석기법을 이용한 유도전동기의 고장진단 (Fault Diagnosis of Induction Motor using Linear Discriminant Analysis)

  • 전병석;이상혁;박장환;유정웅;전명근
    • 조명전기설비학회논문지
    • /
    • 제18권4호
    • /
    • pp.104-111
    • /
    • 2004
  • 본 논문에서는 산업전반에 걸쳐 널리 사용되는 유도전동기의 고장상태를 검출하기 위해 선형판별분석기법에 기반을 둔 진단 알고리즘을 제안하고자 한다. 제안된 기법은 우선 주기별로 실험에 의해 측정된 전류값의 입력차원을 주성분분석기법을 이용하여 축소한 후 선형판별분석기법을 이용하여 고장상태별로 특징벡터를 추출한다. 다음으로 진단단계는 확보된 고장 종류별 특징벡터와 운전 시 입력되는 특징벡터간의 유클리디안 거리를 이용하여 유도전동기의 운전상태를 진단하는 구조로 되어있다. 마지막으로 선형판별분석기법의 타당성을 보이기 위해 노이즈가 있는 다양한 조건하에서 실험한 결과, 주성분분석기법만을 이용한 경우보다 우수한 결과를 나타냈다.

비선형 특징 추출을 위한 온라인 비선형 주성분분석 기법 (On-line Nonlinear Principal Component Analysis for Nonlinear Feature Extraction)

  • 김병주;심주용;황창하;김일곤
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.361-368
    • /
    • 2004
  • 본 논문에서는 온라인 학습 자료의 비선형 특징(feature) 추출을 위한 새로운 온라인 비선형 주성분분석(OL-NPCA : On-line Nonlinear Principal Component Analysis) 기법을 제안한다. 비선형 특징 추출을 위한 대표적인 방법으로 커널 주성분방법(Kernel PCA)이 사용되고 있는데 기존의 커널 주성분 분석 방법은 다음과 같은 단점이 있다. 첫째 커널 주성분 분석 방법을 N 개의 학습 자료에 적용할 때 N${\times}$N크기의 커널 행렬의 저장 및 고유벡터를 계산하여야 하는데, N의 크기가 큰 경우에는 수행에 문제가 된다. 두 번째 문제는 새로운 학습 자료의 추가에 의한 고유공간을 새로 계산해야 하는 단점이 있다. OL-NPCA는 이러한 문제점들을 점진적인 고유공간 갱신 기법과 특징 사상 함수에 의해 해결하였다. Toy 데이타와 대용량 데이타에 대한 실험을 통해 OL-NPCA는 다음과 같은 장점을 나타낸다. 첫째 메모리 요구량에 있어 기존의 커널 주성분분석 방법에 비해 상당히 효율적이다. 두 번째 수행 성능에 있어 커널 주성분 분석과 유사한 성능을 나타내었다. 또한 제안된 OL-NPCA 방법은 재학습에 의해 쉽게 성능이 항상 되는 장점을 가지고 있다.

AANN-기반 고장 센서노드 검출 기법에 관한 연구 (A study on the development of AANN-based faulty sensor node detection algorithm for sensor network)

  • 이영삼;육의수;김성호
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.385-388
    • /
    • 2006
  • 비선형 주성분 분석은 기존에 널리 알려져 있는 주성분 분석기법과 유사한 다변수 데이터 분석을 위한 새로운 접근 방법이다. 비선형 주성분 분석은 AANN(Auto Associative Neural Network)으로 PCA와 마찬가지로 변수들 간에 존재하는 상관관계를 제거함으로써 고차의 다변수 데이터를 정보의 손실을 최소화하면서 최소 차원의 데이터로 변환하는 기법이다. AANN 기반 센서노드 고장검출 기법을 실제 센서 네트워크에 적용하여 봄으로써 센서 드리프트 등과 같은 센서 고장의 검출 및 유효한 센서 보정 성능을 확인하였다.

  • PDF

주성분 분석 기반의 CPA 성능 향상 연구 (A Study on CPA Performance Enhancement using the PCA)

  • 백상수;장승규;박애선;한동국;류재철
    • 정보보호학회논문지
    • /
    • 제24권5호
    • /
    • pp.1013-1022
    • /
    • 2014
  • 상관관계 전력 분석(Correlation Power Analysis, CPA)은 암호장비에서 알고리즘이 수행될 때 누설되는 전력 소비 신호와 알고리즘의 중간 계산 값의 상관도를 이용하여 비밀키를 추출하는 부채널 공격 방법이다. CPA는 누설된 전력 소비의 시간적인 동기 또는 잡음에 의해 공격 성능이 영향을 받는다. 최근 전력 분석의 성능 향상을 위해 다양한 신호 처리 기술이 연구되어지고 있으며, 그 중 주성분 분석 기반의 신호 압축 기술이 제안되었다. 주성분 분석 기반의 신호 압축은 주성분 선택 방법에 따라 분석 성능에 영향을 주기 때문에 주성분 선택은 중요한 문제이다. 본 논문에서는 CPA의 성능 향상을 위해 전력 소비와의 상관도가 높은 주성분을 선택하는 주성분 선택 기법을 제안한다. 또한 각 주성분이 갖는 특징이 다르다는 점을 이용한 주성분 기반 CPA 분석 기법을 제안하고, 기존 방법과 제안하는 방법의 실험적인 분석을 통해 공격 성능이 향상됨을 보인다.

단백질 구조 비교를 위한 전처리 기법으로서의 주성분 분석 (Principal Component Analysis as a Preprocessing Method for Protein Structure Comparison)

  • 박성희;박찬용;김대희;박수준;박선희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.805-808
    • /
    • 2004
  • 본 논문에서는 두 단백질의 구조적 유사성을 기반으로 한 단백질 비교를 위해서 전처리 기법으로서의 주성분분석기법을 소개한다. 기존의 백본 및 알파탄소 간의 거리행렬(distance matrix), 2차 구조 비교기법, 구역(segment)단위의 비교 기법과 같은 단백질 비교 기법들은 위치이동(translation)와 회전(rotation)에 불변한(invariant) 차이를 구하기 위하여 거리행렬을 이용하였다. 그리고, 난 다음 이들의 최적화 과정을 거쳤다. 그러나, 본 논문에서 제시하는 전처리 기법으로서의 주성분분석기법은 단백질 구조를 전체적인 구조 관점에서 위치를 정렬시킨 후에 단백질 간의 구조를 비교하는 방식이다. 단백질의 구조의 방향성(Orientation)을 맞춘 다음에는 다양한 단백질 표현으로 구를 비교할 수 있다. 본 논문에서는 두 단백질의 구조의 유사성을 측정하기 위한 간결한 단백질 표현(representation)으로 3 차원 에지 히스토그램을 사용하였다. 이 기법은 방향성을 정렬하기 위하여 기존의 방법에서 사용되었던 반복적인 거리계산을 통한 최적화하는 과정을 없앰으로써 단백질 구조 비교 시간을 단축할 수 있는 새로운 단백질 구조 비교 패러다임을 가능하게 한다. 따라서, 이 패러다임을 통하여 적절한 단백질 구조 방향성 정렬과 단백질 구조 표현을 이용한 단백질 구조 비교 검색 시스템은 많은 양의 단백질 구조 정보로부터 원하는 형태의 단백질 구조를 빠른 시간에 검색할 수 있는 장점을 가질 수 있다.

  • PDF

PCA와 비선형분류기에 기반을 둔 유도전동기의 고장진단 (Fault Diagnosis of Induction Motor based on PCA and Nonlinear Classifier)

  • 박성무;이대종;전명근
    • 한국지능시스템학회논문지
    • /
    • 제16권1호
    • /
    • pp.119-123
    • /
    • 2006
  • 본 논문에서는, 주성분분석기법과 다층신경망에 기반을 유도전동기의 고장진단기법을 제안하고자 한다. 입력의 수가 많을 경우 다층신경망만을 이용하여 분류하는 데는 한계가 있다. 이러한 문제점을 해결하기 위해 주성분분석기법에 의해 입력특징의 수를 축약한 후, 비선형분류기인 다층신경망을 적용하였다. 또한, 주성 분석기법에 추출된 특징벡터가 고장상태별로 비선형성 특성을 보일 경우 기존의 거리척도 기반에 의한 분류방법으로 정확한 진단을 하는데 어려움이 있다. 이를 위해 비선형 분류기인 MLP를 적용함으로써 효과적인 고장진단을 하자 한다. 세안된 기법은 다양한 실험을 통해 기존의 선형분류기에 비해 우수한 겨과를 보임을 나타내고자 한다.