• Title/Summary/Keyword: 주상절리

Search Result 41, Processing Time 0.027 seconds

A Study of Columnar Joint in Goheung, Jeollanam-do, Korea (전라남도 고흥지역에 분포하는 주상절리에 관한 연구)

  • Son, Jeong-Mo;Ahn, Kun Sang
    • Journal of the Korean earth science society
    • /
    • v.37 no.6
    • /
    • pp.332-345
    • /
    • 2016
  • The columnar joints in Goheung are developed in three places of Yuju-san area, Palyeong-san and Yongbawi area. Vertical and fan-shaped columnar joints which have maximum width 100 m and maximum heigh 50 m are developed in the Yuju-san area Columnar joints are developed next to the road near the the Yuju-san and along the coast of Jijuk-do. Thick columnar joints of maximum width 1m are developed in the Paryeong-san area. Horizontal columnar joints of maximum width 50 cm at length of polygon side are developed on dyke in the Yongbawi area. The columnar joints show high rate of rectangles and pentagons in the number of polygons. The length of polygon side of columnar joints in study area ranges from 10 to 100 cm, and 20 cm among the range appears in high frequency. Columnar joints are developed vertically to the ground from the cooling surface in Yuju-san and Palyeong-san area. Columnar joints in Yongbawi area are developed vertically to the contact of country rocks. As a result, the columnar joints began cooling from the country rock contact. And columnar joints are developed vertically to contact surface. The rocks in columnar joints is rhyolitic welded tuff in Yuju-san and Palyeong-san area, dacite in Yongbawi area. In the acid volcanic rocks flow structure well developed. The white phenocryst mineral about 2 mm size by eye, is usually feldspar, and includes some quartz. The rate of $SiO_2$ is 70wt.% or more. It is the last stage of differentiation to calc-alkaline series. The columnar joints of the Yuju-san area are expected to be distributed along a band that extends to about 1km east of the stone pit.

Research Strategy on Columnar Joint in South Korea (우리나라 주상절리에 대한 연구 전략)

  • Ahn, Kun Sang
    • Journal of the Korean earth science society
    • /
    • v.35 no.7
    • /
    • pp.501-517
    • /
    • 2014
  • Based on a summary of the previous studies on columnar joints, this study presents research strategies and subjects to understand a formation of columnar joints, and its application in South Korea as follows; geometry of colonnade and entablature, formation mechanism and pattern change, surface morphology and internal structure, platy joint at the top and the bottom of columnar joints, crack patterns in drying starch-water slurries, using numerical models and computer graphics on joint formation, scale and geometry concerned with occurrence of volcanic rock, petrological and mineralogical study of the host rock. Additionally, more research is needed, such as deformation of column pattern during the hot state, secondary landform by alteration and weathering on the Earth's surface such as rock stream, tor and tafoni. This study will take an active role in research of columnar joint and the Cenozoic lava flow of South Korea. Results of this study will be useful to the activation of geotourism and geological field study.

Evaluation of the Stability of Ipseok-dae Columnar Joints in Mudeungsan National Park Using 3DEC (3DEC을 이용한 무등산국립공원 입석대 주상절리대의 안정성 평가)

  • Noh, Jeongdu;Kang, Seong Sueng
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.351-361
    • /
    • 2022
  • Numerical analysis performed to predict the behavior of Ipseok-dae columnar joints in Mudeungsan National Park to understand their stability and movement. The numerical analysis technique, 3DEC, is based on the discrete element method that can analysis discontinuities. The analysis used data for material properties derived from laboratory tests, which found that average density was 2.68 kN/m3, average normal stiffness was 3.15 GPa/m, average shear stiffness was 1.00 GPa/m, average cohesion was 0.51 MPa, and the average friction angle was 33°. The Ipseok-dae columnar joints were modeled on the basis of the field survey data for 15 joints located between the observation platform and the hiking trail. The numerical analysis assessed the behavior of each columnar joint by interpreting the displacement of the edges of its upper and lower surfaces. The greatest maximum displacement was found in columnar joint No. 6, and the greatest minimum displacement was found in joint No. 11. Analyzing the movements of five discontinuities in joint No. 11 indicated that the maximum displacement occurred at the 2nd level. The other levels were ordered 5th, 4th, 1st, and 3rd in terms of subsequent greatest displacements. Considering the total displacement in the 15 studied joints, the Ipseok-dae columnar joints are judged to be stable. However, considering the cultural and historical value of Mudeungsan National Park, it is regarded that the currents slope stability should be maintained by monitoring the individual rock blocks of the joints.

Distribution and Petrology of the Columnar Joint in South Korea (남한에서 주상절리의 분포와 암석학적 특성)

  • Ahn, Kun Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.45-59
    • /
    • 2014
  • This study has been designed to collate distribution, morphology, petrology of columnar joint in South Korea. Reported columnar joint areas in South Korea are 68, until the present time. These can be divided into five group by geography and volcanic activity. 1) The 16 columnar joint areas are distributed in Hantangang region. The 15 areas in this region are composed of basaltic lava in the Quaternary period, and the other 1 area is composed of volcanic rocks in the Cretaceous period. 2) The 18 columnar joint areas are distributed in Jeju island. Most of them are composed of basaltic lava(alkali basalt and Hawaiite), and the Sanbangsan and Baegrokdam area are composed of trachyte in the Quaternary period. Colonnade, entablature and chisel mark of the columnar joint are typically occur in basaltic lava. 3) The 5 columnar joint areas are distributed into the Ulleung island and Dokdo including Guksubawi. These are consisted of relatively well-formed trachyte columns in the Quaternary period. 4) The 8 columnar joint areas are distributed into the Pohang, Gyeongju and Ulsan region and consist of the Tertiary period volcanic rock. It's shape are dome, radial, horizontal and vertical. The 4 columnar joint areas are reported in the Pyeongtaek and Asan city of Chungcheongnamdo and Gosung of Gangwondo. All of them are the Tertiary period basalt. 5) The 15 columnar joint areas are distributed into the west and south coast region. Those are consisted of various rock type(from basalt to dacite), various occurrences(lava flow to welded tuff), and various diameters(20 cm to several meters). The columnar joint of Mudeung mountain and Juwang mountain are welded tuff in the Cretaceous period. The columnar joint is distributed over a wide area in South Korea, 5 in Gangwondo, 13 in Gyeonggido, 2 in Chungnam, 14 in Gyeongbuk, 1 in Jeonbuk, 10 in Jeonnam, 5 in Gyeongnam, and 18 in Jeju. The columnar joints in South Korea can be arranged in order of formative period, 18 in the Cretaceous period, 12 in the Tertiary period, and 38 in the Quaternary period. By magma series, 36 are belong to alkaline series and 32 are belong to sub-alkaline series.

Forming processes and the Value of the Natural Heritage of the Guksubawi in Ulleung Island, Korea (울릉도 국수바위 주상절리의 형성과정과 자연유산적인 가치)

  • Woo, Hyeon Dong;Park, Jin Soo;Oh, Han Sol;Jang, Yun Deuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Trachytic cliff showing a unique appearance like noodle is located in the Mt. Bipa, Seo-myeon, Ulleung island. This cliff is named 'Guksubawi'(means noodle-like rock) by its appearance. There is cliffs on three sides except north side and each side shows semi-vertical columnar joints obviously. This columnar joint has different character in appearance and mineralogy according to their direction and this tendency is remarkable in contrast between the east side and the west side. The consideration of the cooling processes after eruption of trachytic lava based on the contrast of both columnar joints dealt in the full text. In the morphological approach, the columnar joint on the east side has narrower space and chisel-like marks than the west side. And the joint walls are sharper on the east side than west side too. In the mineralogical approach, then, trachyte on the west side has bigger phenocrysts than the east side and is showing glomeroporphyritic texture and weak trachytic textures of lath of plagioclase. Around these differences between the east side and the west side, it modelled the typical temperature gradient while the cooling processes of hot rocks and the east side, consequently, corresponds to exterior of the entire trachytic volume. The columnar joint of the Guksubawi has the value of landscape and scientific importance about the forming processes of the columnar joint of trachytic lava, and so supposed it has enough values to preserved as natural heritage.

Formation Mechanism of Columnar Joints at the Sanin Kaigan Geopark in Japan (일본 산인해안지오파크에 분포하는 주상절리의 형성메커니즘)

  • Ahn, Kun Sang
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.575-592
    • /
    • 2018
  • This study investigates the formation mechanism of columnar joints at the Sanin Kaigan Geopark in Japan based on its morphology, rock type and igneous structure. Columnar joints distribute to five areas of three prefectures. That is, Kyogasaki, Byobuiwa, Tateiwa and Kyugenkado in Kyotango area of Kyoto prefecture; Genbudo and Kinumaki Shrine in Toyooka City of Hyogo prefecture; Yoroinosode, Takanosushima, Mini-Yoroinosode in Kamicho Town of Hyogo prefecture; Miooshima and Nagasakihana, Shitaara Domon, Kuzakuishi, Moroyose dyke in Shinonsencho Town of Hyogo prefecture; Shirawara dyke in Iwamicho Town in Tottori prefecture. Igneous structures are divided into three types: lava flow, sill and dyke. Lithologies are divided into five types including basalt, andesite, dacite, rhyolite, and quartz porphyry. Lava flow shows colonnade and entablature. However, entablature is not seen in the sills and dykes in the area. Although the polygons of columnar joint vary from tetragon to octagon, hexagon is most frequently found. The width of colonnades ranges from 10cm to 1m, but their size does not correlate with its $SiO_2$ contents. Meanwhile, their size and morphology at single site are comparatively uniform.

A Study on Evaluation of Slope Stability and Range of Rockfall Hazard of Daljeon-ri Columnar Joint in Pohang, Korea (천연기념물 제415호 포항 달전리 주상절리의 사면안정성 평가 및 낙석 위험 범위 설정)

  • Kim, Jae Hwan;Kang, Mu Hwan;Kong, Dal-Yong;Jwa, Yong-Joo
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.505-515
    • /
    • 2021
  • In this study, we evaluated the slope stability of the Pohang Daljeon-ri columnar joint (Natural Monuments # 415) and calculated the maximum energy, jumping height and moving distance of rockfalls using a simulation. Based on the results, we established the range of rockfall risk. The slopes of the Pohang Daljeon-ri columnar joint have dip directions of 93.79°, 131.99°, 165.54° and 259.84° from left (SW) to right (NE). Furthermore, they have a fan-like shape. The Pohang Daljeon-ri columnar joints are divided into four sections depending on the dip direction. The measurement results of the discontinuous face show that zone 1 is 125, zone 2 is 261, zone 3 is 262, zone 4 is 43. The results of slope stability analyses for each section using a stereographic projection method correspond to the range of planar and toppling failure. Although it is difficult to diagnose the type of failure, risk evaluation of currently falling rocks requires further focus. The maximum movement distance of a rockfall in the simulation was approximately 66 m and the rockfall risk range was the entire area under slope. In addition, it is difficult to forecast where a rock will fall as it rolls in various directions due to topographic factors. Thus, the installation of measures to prevent falling is suggested to secure the stability based on the results of the rockfall simulations and its probabilistic analysis.

Concentric Structure and Radial Joint System within Basic Lava Flow at the seashore of Aewol, Jeju Island, South Korea (제주도 애월읍 해안의 염기성 용암류에 발달한 동심원 구조와 방사상 절리)

  • Ahn, Kun Sang
    • Journal of the Korean earth science society
    • /
    • v.42 no.2
    • /
    • pp.185-194
    • /
    • 2021
  • A lava dome and sheet lava flow can be observed at the seashore of Aewol, Jeju island. The cylindrical lobes are characterized by a concentric structure consisting of a massive core and radial joints. Columnar joints with different thickness between the upper and lower parts are developed in the sheet lava flow around the rock salt field in Goeomri. The upper part of the columnar joints is uneven in shape, and has a diameter of 120-150 cm. The lower part of the columnar joints is hexagonal and pentagonal in shape, and has a diameter of about 60 cm. The cylindrical lobes can be divided into two groups based on size and shape. One is a megalobe, with a semicircular outline and a maximum diameter of 30 m. The other is a circular lobe with a diameter of less than 10 m. The columns in the radial joints have hexagonal and pentagonal cross sections and gradually increasing diameter, outward from the core, to a size of 80-120 cm at the rim. The concentric structure observed in the cylindrical lavas is attributable to a combination of four factors. The first is a circular crack caused by the decrease of the temperature and density difference between the inside and outside of the cylindrical lava flow. The second is a concentric chisel mark of the radial joints, which formed at the same time as the radial joints. The third is a flow band, which is a trace left in a round passage when lava flows through. The fourth is a vesicular band formed in a cave by gas bubbles escaping from the lava flow.

Engineering Characteristics of Mudeungsan Tuff and Ipseok-dae Columnar Joints (무등산응회암과 입석대 주상절리대의 공학적 특성)

  • Noh, Jeongdu;Jang, Heewon;Lim, Chaehun;Hwang, Namhyun;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.161-173
    • /
    • 2020
  • This study is to examine the engineering characteristics of colunmar joints in Mudeugsan National Park, a global geopark. For these purposes, physical and mechanical properties of Mudeungsan Tuff, evaluation for the weathering degree of columnar joints, and crack behavior monitoring in columnar joints were conducted. The physical properties of Mudeungsan tuff were 1.02% for the average porosity, 0.38% for the average absorption, 2.69 g/㎤ for the average specific gravity, and 4,948 m/s for the average elastic wave velocity. Its mechanical properties were 337 MPa for the average uniaxial compressive strength, 68 GPa for the average elastic modulus, 0.29 for the average Poisson's ratio, 41.3 MPa for the average cohesion strength, and 62.8° for the average friction angle. the average rebound Q-value of the silver Schmidt hammer for the three columnar joint blocks at the Ipseok-dae was shown as 49.3. when this value is converted into uniaxial compressive strength, it becomes 70.5 MPa, which is about 21% of the uniaxial compression strength of Mudeungsan tuff. In addition, according to the results of crack monitoring measurements for the three columnar joint blocks at the Ipseok-dae, the crack behavior is less than 1 mm, so it is believed that its behavior in Ipseak-dae columnar joints has hardly occured to date.

Physical and Mechanical Properties on Ipseok-dae Columnar Joints of Mt. Mudeung National Park (무등산국립공원 입석대 주상절리대에 대한 물리역학적 특성)

  • Ko, Chin-Surk;Kim, Maruchan;Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.383-392
    • /
    • 2016
  • This study is to evaluate the physical and mechanical properties on the Ipseok-dae columnar joints of Mt. Mudeung National Park. For these purposes, physical and mechanical properties as well as discontinuity property on the Mudeungsan tuff, measurement of vibration and local meteorology around columnar joints, and ground deformation by self-weight of columnar joints were examined. For the physical and mechanical properties, average values were respectively 0.65% for porosity, 2.69 for specific gravity, 2.68 g/cm3 for density, and 2411 m/s for primary velocity, 323 MPa for uniaxial compressive strength, 81 GPa Young's modulus, and 0.25 for Poisson's ratio. For the joint shear test, average values were respectively 3.15 GPa/m for normal stiffness, 0.38 GPa/m for shear stiffness, 0.50 MPa for cohesion, and 35° for internal friction angle. The JRC standard and JRC chart was in the range of 4~6, and 1~1.5, respectively. The rebound value Q of silver schmidt hammer was 57 (≒ 90 MPa). It corresponds 20% of the uniaxial compressive strength of intact rock. The maximum vibration value around the Ipseok=dae columnar joints was in the range of 0.57 PPV (mm/s)~2.35 PPV (mm/s). The local meteorology of surface temperature, air temperature, humidity, and wind on and around columnar joints appeared to have been greatly influenced the weather on the day of measurement. For the numerical analysis of ground deformation due to its self-weight of the Ipseok-dae columnar joints, the maximum displacement of the right ground shows when the ground distance is approximately 2 m, while drastically decreased by 2~4 m, thereafter was insignificant. The maximum displacement of the middle ground shows when the ground distance is approximately 0~2 m, while drastically decreased by 3~10 m, thereafter was insignificant. The maximum displacement of the left ground shows when the ground distance is approximately 5~6 m, while drastically decreased by 6~10 m, thereafter was insignificant.