• 제목/요약/키워드: 주가 예측 모델

검색결과 1,789건 처리시간 0.037초

텐서플로우를 이용한 주가 예측에서 가격-기반 입력 피쳐의 예측 성능 평가 (Performance Evaluation of Price-based Input Features in Stock Price Prediction using Tensorflow)

  • 송유정;이재원;이종우
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권11호
    • /
    • pp.625-631
    • /
    • 2017
  • 과거부터 현재까지 주식시장에 대한 주가 변동 예측은 풀리지 않는 난제이다. 주가를 과학적으로 예측하기 위해 다양한 시도 및 연구들이 있어왔지만, 아직까지 정확한 미래를 예측하는 것은 불가능하다. 하지만, 주가 예측은 경제, 수학, 물리 그리고 전산학 등 여러 관련 분야에서 오랜 관심의 대상이 되어왔다. 본 논문에서는 최근 각광 받고 있는 딥러닝(Deep-Learning)을 이용하여 주가의 변동패턴을 학습하고 미래를 예측하고자한다. 본 연구에서는 오픈소스 딥러닝 프레임워크인 텐서플로우를 이용하여 총 3가지 학습 모델을 제시하였으며, 각 학습모델은 각기 다른 입력 피쳐들을 받아들여 학습을 진행한다. 입력 피쳐는 이전 연구에서 사용한 단순 가격 데이터를 확장해 입력 피쳐 개수를 증가시켜가며 실험을 하였다. 세 가지 예측 모델의 학습 성능을 측정했으며, 이를 통해 가격-기반 입력 피쳐에 따라 달라지는 예측 모델의 성능 변화 비교 분석하여 가격-기반 입력 피쳐가 주가예측에 미치는 영향을 평가하였다.

역학적 모델과 딥러닝 모델을 결합한 저수지 수온 및 수질 예측 (Predicting water temperature and water quality in a reservoir using a hybrid of mechanistic model and deep learning model)

  • 김성진;정세웅
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.150-150
    • /
    • 2023
  • 기작기반의 역학적 모델과 자료기반의 딥러닝 모델은 수질예측에 다양하게 적용되고 있으나, 각각의 모델은 고유한 구조와 가정으로 인해 장·단점을 가지고 있다. 특히, 딥러닝 모델은 우수한 예측 성능에도 불구하고 훈련자료가 부족한 경우 오차와 과적합에 따른 분산(variance) 문제를 야기하며, 기작기반 모델과 달리 물리법칙이 결여된 예측 결과를 생산할 수 있다. 본 연구의 목적은 주요 상수원인 댐 저수지를 대상으로 수심별 수온과 탁도를 예측하기 위해 기작기반과 자료기반 모델의 장점을 융합한 PGDL(Process-Guided Deep Learninig) 모델을 개발하고, 물리적 법칙 만족도와 예측 성능을 평가하는데 있다. PGDL 모델 개발에 사용된 기작기반 및 자료기반 모델은 각각 CE-QUAL-W2와 순환 신경망 딥러닝 모델인 LSTM(Long Short-Term Memory) 모델이다. 각 모델은 2020년 1월부터 12월까지 소양강댐 댐 앞의 K-water 자동측정망 지점에서 실측한 수온과 탁도 자료를 이용하여 각각 보정하고 훈련하였다. 수온 및 탁도 예측을 위한 PGDL 모델의 주요 알고리즘은 LSTM 모델의 목적함수(또는 손실함수)에 실측값과 예측값의 오차항 이외에 역학적 모델의 에너지 및 질량 수지 항을 제약 조건에 추가하여 예측결과가 물리적 보존법칙을 만족하지 않는 경우 penalty를 부가하여 매개변수를 최적화시켰다. 또한, 자료 부족에 따른 LSTM 모델의 예측성능 저하 문제를 극복하기 위해 보정되지 않은 역학적 모델의 모의 결과를 모델의 훈련자료로 사용하는 pre-training 기법을 활용하여 실측자료 비율에 따른 모델의 예측성능을 평가하였다. 연구결과, PGDL 모델은 저수지 수온과 탁도 예측에 있어서 경계조건을 통한 에너지와 질량 변화와 저수지 내 수온 및 탁도 증감에 따른 공간적 에너지와 질량 변화의 일치도에 있어서 LSTM보다 우수하였다. 또한 역학적 모델 결과를 LSTM 모델의 훈련자료의 일부로 사용한 PGDL 모델은 적은 양의 실측자료를 사용하여도 CE-QUAL-W2와 LSTM 보다 우수한 예측 성능을 보였다. 연구결과는 다차원의 역학적 수리수질 모델과 자료기반 딥러닝 모델의 장점을 결합한 새로운 모델링 기술의 적용 가능성을 보여주며, 자료기반 모델의 훈련자료 부족에 따른 예측 성능 저하 문제를 극복하기 위해 역학적 모델이 유용하게 활용될 수 있음을 시사한다.

  • PDF

코스피 방향 예측을 위한 하이브리드 머신러닝 모델 (Hybrid Machine Learning Model for Predicting the Direction of KOSPI Securities)

  • 황희수
    • 한국융합학회논문지
    • /
    • 제12권6호
    • /
    • pp.9-16
    • /
    • 2021
  • 과거 주가 데이터와 금융 관련 빅 데이터를 사용해 머신러닝 기법으로 주식시장을 예측하는 연구는 다양하게 있어 왔지만, HTS와 MTS를 통해 거래가 가능한 주가지수 연동 ETF가 생기면서 주가지수를 예측하는 연구가 최근 주목받고 있다. 본 논문에서는 KOSPI 연동 ETF를 거래할 목적으로 KOSPI의 상승 예측을 위한 머신러닝 모델과 하락예측을 위한 모델을 각각 구현한다. 이들 모델은 매개변수의 그리드 탐색을 통해 최적화 된다. 또한 정밀도를 개선해 ETF 거래 수익률을 높일 수 있도록 개별 모델들을 조합한 하이브리드 머신러닝 모델을 제안한다. 예측 모델의 성능은 정확도와 ETF 거래 수익률에 큰 영향을 미치는 정밀도로 평가된다. 하이브리드 상승 예측 모델의 정확도와 정밀도는 72.1 %와 63.8 %이고 하락 예측 모델은 79.8 %와 64.3 %이다. 하이브리드 하락 예측 모델에서 정밀도는 개별 모델보다 최소 14.3 %, 최대 20.5 % 개선되었다. 테스트 기간에 하이브리드 모델은 하락에서 10.49 %, 상승에서 25.91 %의 ETF 거래 수익률을 보였다. 인버스×2와 레버리지 ETF로 거래하면 수익률을 1.5 ~ 2배로 높일 수 있다. 하락예측 머신러닝 모델에 대한 추가 연구로 수익률을 더 높일 수 있을 것으로 기대한다.

양방향 LSTM 순환신경망 기반 주가예측모델 (Stock Prediction Model based on Bidirectional LSTM Recurrent Neural Network)

  • 주일택;최승호
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.204-208
    • /
    • 2018
  • 본 논문에서는 시계열 데이터인 주가의 변동 패턴을 학습하고, 주가 가격을 예측하기 적합한 주가 예측 딥러닝 모델을 제시하고 평가하였다. 일반신경망에 시계열 개념이 추가되어 은닉계층에 이전 정보를 기억시킬 수 있는 순환신경망이 시계열 데이터인 주가 예측 모델로 적합하다. 순환신경망에서 나타나는 기울기 소멸문제를 해결하며, 장기의존성을 유지하기 위하여, 순환신경망의 내부에 작은 메모리를 가진 LSTM을 사용한다. 또한, 순환신경망의 시계열 데이터의 직전 패턴 기반으로만 학습하는 경향을 보이는 한계를 해결하기 위하여, 데이터의 흐름의 역방향에 은닉계층이 추가되는 양방향 LSTM 순환신경망을 이용하여 주가예측 모델을 구현하였다. 실험에서는 제시된 주가 예측 모델에 텐서플로우를 이용하여 주가와 거래량을 입력 값으로 학습을 하였다. 주가예측의 성능을 평가하기 위해서, 실제 주가와 예측된 주가 간의 평균 제곱근 오차를 구하였다. 실험결과로는 단방향 LSTM 순환신경망보다, 양방향 LSTM 순환신경망을 이용한 주가예측 모델이 더 작은 오차가 발생하여 주가 예측 정확성이 향상되었다.

앙상블 조합 방법에 따른 주가 예측 성능 비교 (Comparison of Stock Price Forecasting Performance by Ensemble Combination Method)

  • 양현성;박준;소원호;심춘보
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.524-527
    • /
    • 2022
  • 본 연구에서는 머신러닝(Machine Learning, ML)과 딥러닝(Deep Learning, DL) 모델을 앙상블(Ensemble)하여 어떠한 주가 예측 방법이 우수한지에 대한 연구를 하고자 한다. 연구에 사용된 모델은 하이퍼파라미터(Hyperparameter) 조정을 통하여 최적의 결과를 출력한다. 앙상블 방법은 머신러닝과 딥러닝 모델의 앙상블, 머신러닝 모델의 앙상블, 딥러닝 모델의 앙상블이다. 세 가지 방법으로 얻은 결과를 평균 제곱근 오차(Root Mean Squared Error, RMSE)로 비교 분석하여 최적의 방법을 찾고자 한다. 제안한 방법은 주가 예측 연구의 시간과 비용을 절약하고, 최적 성능 모델 판별에 도움이 될 수 있다고 사료된다.

기업 리뷰 정보를 활용한 주가 방향 예측 모델 비교 분석 (A Comparative Analysis of the Prediction Models for the Direction of Stock Price Using the Online Company Reviews)

  • 임용택;임희석
    • 한국융합학회논문지
    • /
    • 제11권8호
    • /
    • pp.165-171
    • /
    • 2020
  • 텍스트 마이닝을 활용한 주가 방향 예측 연구에서는 대부분 뉴스, SNS 데이터를 사용하고 있다. 하지만 뉴스, SNS 데이터로부터 기업에 대한 솔직하고 생생한 정보는 얻기 어렵다는 약점이 존재한다. 본 논문에서는 실제 근무 경험이 있는 내부 직원의 기업 리뷰를 반영하여, 종업원 만족도를 활용한 주가의 방향성을 예측하는 문제를 다룬다. 머신러닝 모델별 성능평가를 통해 예측 정확도를 비교, 분석한 결과 종업원의 기업 리뷰 데이터를 추가로 이용한 주가 방향 예측 모델은 그렇지 않은 모델 대비 뛰어난 분류 성과를 보였다. 본 연구는 금융 공학에 자연어처리기술을 활용한 융합 연구로서 주가 예측 분야에서 종업원 만족도를 활용한 기존에 없던 새로운 방법론을 추구하였다. 실무적으로 주가 방향 예측 분야에 유용한 정보를 제공할 것으로 기대된다.

제조업 전력량 예측 정확성 향상을 위한 Double Encoder-Decoder 모델 (Double Encoder-Decoder Model for Improving the Accuracy of the Electricity Consumption Prediction in Manufacturing)

  • 조영창;고병길;성종훈;조영식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권12호
    • /
    • pp.419-430
    • /
    • 2020
  • 본 연구는 기존 전력량 예측 모델의 구조를 변경하여 모델의 예측 능력을 향상 시킬 수 있는 방법에 관하여 연구하였다. 전기에 대한 수요는 그 어느 때보다 증가하고 있다. 산업 부문에서는 그 어느 부문 보다 전기 소모량이 많음으로, 더욱 정확한 공장 지역의 전력량 소모 예측 모델이 잉여 에너지 생산을 줄이기 위해 주목을 받고 있다. 우리는 2개의 개별 encoder와 한개의 decoder를 사용하여, 장기와 단기 데이터를 모두 사용하는 double encoder-decoder 모델을 제안한다. 우리는 제안된 모델을 세홍(주)의 생산 구역에서 2019년 1월 1일부터 2019년 6월 30일 까지 모집된 전력 소모량 데이터에서 평가 하였다. double encoder-decoder 모델은 기존의 encoder-decoder 모델을 사용했을 때와 비교하여 약 10 %의 평균 절대 비율 오차의 감소를 기록 하였다. 본 결과는 제안한 모델이 encoder-decoder 모델에 비해 생산 지역의 전력 사용량의 예측을 더 정확하게 하는 모델임을 보여준다.

심층 신경회로망 모델을 이용한 일별 주가 예측 (Daily Stock Price Forecasting Using Deep Neural Network Model)

  • 황희수
    • 한국융합학회논문지
    • /
    • 제9권6호
    • /
    • pp.39-44
    • /
    • 2018
  • 심층 신경회로망은 적합한 수학적 모델에 대한 어떠한 가정 없이 데이터로부터 유용한 정보를 추출해서 예측에 필요한 입출력 관계를 정의할 수 있기 때문에 최근 시계열 예측 분야에서 주목 받고 있다. 본 논문에서는 주가의 일별 종가를 예측하기 위한 심층 신경회로망 모델을 제안한다. 제안된 심층 신경회로망은 예측 정밀도를 높이기 위해 단일 층의 오토인코더와 4층의 신경회로망이 결합된 구조를 갖는다. 오토인코더 층은 주가 예측에 필요한 최적의 입력 특징을 추출하고 4층의 신경회로망은 추출된 특징을 사용해 주가 예측에 필요한 동특성을 반영하여 주가를 출력한다. 제안된 심층 신경회로망의 학습은 층별로 단계적으로 이뤄지며 최종 단계에서 전체 심층 신경회로망에 대해 한 번 더 학습이 실행된다. 본 논문에 제안된 방법으로 KOrea composite Stock Price Index (KOSPI) 일별 종가를 예측하는 심층 신경회로망을 구현하고 기존 방법과 예측 정확도를 비교, 평가한다.

주식 예측을 위한 은닉 마코프 모델의 이용 (Using Hidden Markov Model for Stock Flow Forecasting)

  • 박형준;홍다혜;김문현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1860-1861
    • /
    • 2007
  • 주식 예측은 주식 시장이 생긴 이래로 투자자들이나, 금융 전문가들 사이에서 매우 중요한 일이 되어 왔다. 그러한 중요성으로 인해 엘리오트 파동이론과 같은 많은 주식 예측 기법이 제시되었고, 또한 이러한 예�G의 자동화를 위해 인공지능분야에서도 많은 연구가 있어왔다. 주가 예측에 패턴인식 방법을 적용한 기존의 연구로는 주로 ANN(Artificial Neural Network)방식과 은닉 마코프 모델(HMM, Hidden Markov Model)이 있었고, 본 논문에서는 HMM을 이용한 방법을 제안한다. HMM은 시간 순차적인 패턴을 가지는 모델의 인식에 좋은 성능을 보여 주로 음성인식 분야에서 많이 이용되고 있다. 주식 변화 역시 시간 순차적 흐름에 따라 기울기의 변화가 어느 정도 일정한 패턴을 가지는 성질이 있고, 이것은 HMM을 이용한 패턴인식으로 주식의 앞으로의 변화를 예측하기에 적합한 요인이 된다. 본 논문에서는 이를 위해 다음과 같은 과정을 걸쳤다. 첫 번째로 실존 회사의 장기간의 주식 테이터를 기반으로 여러 개의 HMM모델을 학습 하였다. 두 번째로 예측하고자 하는 기간 이전의 주식 변화 데이터를 입력으로 하여, 이전에 이와 유사한 패턴이 있었는지를 HMM을 통해 알아냈다. 마지막으로 이렇게 알아낸 패턴을 이용하여 앞으로의 주식 변화를 예측하였다. 실험은 실제 주식 변화와 예측값의 비교를 통해 정확도를 검증하였다.

  • PDF

호가창과 뉴스 헤드라인을 이용한 딥러닝 기반 주가 변동 예측 기법 (Deep Learning-based Stock Price Prediction Using Limit Order Books and News Headlines)

  • 류의림;이기용;정연돈
    • 한국전자거래학회지
    • /
    • 제27권1호
    • /
    • pp.63-79
    • /
    • 2022
  • 최근 머신러닝 및 딥러닝 기법을 활용한 주식 가격 예측 연구가 다양하게 이루어지고 있다. 그 중에서도 최근에는 주식 매수 및 매도 주문 정보를 담고 있는 호가창을 이용하여 주가를 예측하려는 연구가 시도되고 있다. 하지만 호가창을 활용한 연구는 대부분 가장 최근 일정 기간 동안의 호가창 추이만을 고려하며, 호가창의 중기 추이와 단기 추이를 같이 고려하는 연구는 거의 진행되지 않았다. 이에 본 논문에서는 호가창의 중기와 단기 추이를 모두 고려하여 주가 등락을 보다 정확히 예측하는 딥러닝 기반 예측 모델을 제안한다. 더욱이 본 논문에서 제안하는 모델은 중단기 호가창 정보 외에도 해당 종목에 대한 동기간 뉴스 헤드라인까지 고려하여 기업의 정성적 상황까지 주가 예측에 반영한다. 본 논문에서 제안하는 딥러닝 기반 예측 모델은 호가창 변화의 특징을 합성곱 신경망으로 추출하고 뉴스 헤드라인의 특징을 Word2vec을 이용하여 추출한 뒤, 이들 정보를 결합하여 특정 기업 주식의 다음 날 등락 여부를 예측한다. 실제 NASDAQ 호가창 데이터와 뉴스 헤드라인 데이터를 사용하여 제안 모델로 5개 종목(Amazon, Apple, Facebook, Google, Tesla)의 일일 주가 등락을 예측한 결과, 제안 모델은 기존 모델에 비해 정확도를 최대 17.66%p, 평균 14.47%p 향상시켰다. 또한 해당 모델로 모의 투자를 수행한 결과, 21 영업일 동안 종목에 따라 최소 $492.46, 최대 $2,840.83의 수익을 얻었다.