• Title/Summary/Keyword: 주가 예측

Search Result 6,594, Processing Time 0.037 seconds

Time Series Stock Prices Prediction Based On Fuzzy Model (퍼지 모델에 기초한 시계열 주가 예측)

  • Hwang, Hee-Soo;Oh, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.689-694
    • /
    • 2009
  • In this paper an approach to building fuzzy models for predicting daily and weekly stock prices is presented. Predicting stock prices with traditional time series analysis has proven to be difficult. Fuzzy logic based models have advantage of expressing the input-output relation linguistically, which facilitates the understanding of the system behavior. In building a stock prediction model we bear a burden of selecting most effective indicators for the stock prediction. In this paper information used in traditional candle stick-chart analysis is considered as input variables of our fuzzy models. The fuzzy rules have the premises and the consequents composed of trapezoidal membership functions and nonlinear equations, respectively. DE(Differential Evolution) identifies optimal fuzzy rules through an evolutionary process. The fuzzy models to predict daily and weekly open, high, low, and close prices of KOSPI(KOrea composite Stock Price Index) are built, and their performances are demonstrated.

Stock Prediction Model based on Bidirectional LSTM Recurrent Neural Network (양방향 LSTM 순환신경망 기반 주가예측모델)

  • Joo, Il-Taeck;Choi, Seung-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.204-208
    • /
    • 2018
  • In this paper, we proposed and evaluated the time series deep learning prediction model for learning fluctuation pattern of stock price. Recurrent neural networks, which can store previous information in the hidden layer, are suitable for the stock price prediction model, which is time series data. In order to maintain the long - term dependency by solving the gradient vanish problem in the recurrent neural network, we use LSTM with small memory inside the recurrent neural network. Furthermore, we proposed the stock price prediction model using bidirectional LSTM recurrent neural network in which the hidden layer is added in the reverse direction of the data flow for solving the limitation of the tendency of learning only based on the immediately preceding pattern of the recurrent neural network. In this experiment, we used the Tensorflow to learn the proposed stock price prediction model with stock price and trading volume input. In order to evaluate the performance of the stock price prediction, the mean square root error between the real stock price and the predicted stock price was obtained. As a result, the stock price prediction model using bidirectional LSTM recurrent neural network has improved prediction accuracy compared with unidirectional LSTM recurrent neural network.

A Stock Price Prediction Based on Recurrent Convolution Neural Network with Weighted Loss Function (가중치 손실 함수를 가지는 순환 컨볼루션 신경망 기반 주가 예측)

  • Kim, HyunJin;Jung, Yeon Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.3
    • /
    • pp.123-128
    • /
    • 2019
  • This paper proposes the stock price prediction based on the artificial intelligence, where the model with recurrent convolution neural network (RCNN) layers is adopted. In the motivation of this prediction, long short-term memory model (LSTM)-based neural network can make the output of the time series prediction. On the other hand, the convolution neural network provides the data filtering, averaging, and augmentation. By combining the advantages mentioned above, the proposed technique predicts the estimated stock price of next day. In addition, in order to emphasize the recent time series, a custom weighted loss function is adopted. Moreover, stock data related to the stock price index are adopted to consider the market trends. In the experiments, the proposed stock price prediction reduces the test error by 3.19%, which is over other techniques by about 19%.

Research model on stock price prediction system through real-time Macroeconomics index and stock news mining analysis (실시간 거시지표 예측과 증시뉴스 마이닝을 통한 주가 예측시스템 모델연구)

  • Hong, Sunghyuck
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.31-36
    • /
    • 2021
  • As the global economy stagnated due to the Corona 19 virus from Wuhan, China, most countries, including the US Federal Reserve System, introduced policies to boost the economy by increasing the amount of money. Most of the stock investors tend to invest only by listening to the recommendations of famous YouTubers or acquaintances without analyzing the financial statements of the company, so there is a high possibility of the loss of stock investments. Therefore, in this research, I have used artificial intelligence deep learning techniques developed under the existing automatic trading conditions to analyze and predict macro-indicators that affect stock prices, giving weights on individual stock price predictions through correlations that affect stock prices. In addition, since stock prices react sensitively to real-time stock market news, a more accurate stock price prediction is made by reflecting the weight to the stock price predicted by artificial intelligence through stock market news text mining, providing stock investors with the basis for deciding to make a proper stock investment.

Deep Learning-Based Stock Fluctuation Prediction According to Overseas Indices and Trading Trend by Investors (해외지수와 투자자별 매매 동향에 따른 딥러닝 기반 주가 등락 예측)

  • Kim, Tae Seung;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.367-374
    • /
    • 2021
  • Stock price prediction is a subject of research in various fields such as economy, statistics, computer engineering, etc. In recent years, researches on predicting the movement of stock prices by learning artificial intelligence models from various indicators such as basic indicators and technical indicators have become active. This study proposes a deep learning model that predicts the ups and downs of KOSPI from overseas indices such as S&P500, past KOSPI indices, and trading trends by KOSPI investors. The proposed model extracts a latent variable using a stacked auto-encoder to predict stock price fluctuations, and predicts the fluctuation of the closing price compared to the market price of the day by learning an LSTM suitable for learning time series data from the extracted latent variable to decide to buy or sell based on the value. As a result of comparing the returns and prediction accuracy of the proposed model and the comparative models, the proposed model showed better performance than the comparative models.

Ensemble Forecasting of Summer Seasonal Streamflow Using Hydroclimatic Information (수문기상정보를 이용한 여름 유량의 Ensemble 예측)

  • Kwon, Hyun-Han;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1455-1459
    • /
    • 2006
  • 우리나라 수자원 관리에서 여름 유량은 이수 및 치수 측면에서 매우 중요한 역할을 한다. 이러한 점에서 여름유량의 예측 가능성을 검토하는 것은 수자원 관리에 유연성을 주는 동시에 상대적으로 위험도를 저감시킬 수 있는 역할을 할 수 있다. 따라서 본 연구의 목적은 여름 계절 유량을 대상으로 기상인자와의 상관성 분석을 통해 유량 예측을 위한 수문기상정보(hydroclimatics)를 전 지구적으로 검토하고 최종적으로 불확실성을 고려할 수 있는 Ensemble예측을 실시하고자 한다. Ensemble예측은 설정 가능한 입력 자료를 통하여 다수의 출력자료를 얻는 방법론으로서 불확실성이 큰 기상 및 수문기상자료 분석에 주로 이용되고 있다. 본 연구에서는 해수면온도(sea surface temperature), 해수면기압(sea level pressure)과 방출장파복사에너지(outgoing longwave radiation)를 주요 기상인자로 고려하였으며 예측모형으로서는 Cross Ensemble(out of bagging)방법에 근거한 Support Vector Machine 모형을 이용하였다. 분석결과 주요 기상인자와 50%이상의 상관관계를 보이고 있으며 다소 합리적인 예측 결과를 제시하여 주고 있어 수자원관리를 위한 보조수단으로 이용이 가능할 것으로 사료된다.

  • PDF

Stock Prediction Using News Text Mining and Time Series Analysis (뉴스 텍스트 마이닝과 시계열 분석을 이용한 주가예측)

  • Ahn, Sung-Won;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.364-369
    • /
    • 2010
  • 본 논문에서는 뉴스 텍스트 마이닝을 수행하여 2005년 1월부터 2008년 12월까지 4년 간의 뉴스 데이터에 대해 주가에 호재인지 악재인지 여부에 대해 학습을 하고, 이를 근거로 신규 발행된 뉴스가 주가 상승 또는 하락에 영향을 미치는지를 예측하는 알고리즘을 제안한다. 뉴스 텍스트 마이닝을 위해 변형된 Bag of Words 모델과 Naive Bayesian 분류기법을 사용하였으며, 특히 주가 예측에 있어서 뉴스 마이닝에만 의존하던 기존의 관련 연구와는 달리 예측의 정확성을 높이기 위해 주가의 시계열 데이터 분석기법인 RSI를 추가로 작용하였다. 2009년 11월부터 2010년 2월까지 4개월간 42,355건의 뉴스 데이터에 대해 실험한 결과, 기존 연구 대비 의미 있는 결과인 55.01%의 예측성공률을 얻었다.

  • PDF

Assessing the Utility of Rainfall Forecasts for Weekly Groundwater Level Forecast in Tampa Bay Region, Florida (주단위 지하수위 예측 모의를 위한 강우 예측 자료의 적용성 평가: 플로리다 템파 지역 사례를 중심으로)

  • Hwang, Syewoon;Asefa, Tirusew;Chang, Seungwoo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.1-9
    • /
    • 2013
  • 미래 기후 정보를 이용한 수문 환경의 단기 미래 예측은 안정적 수자원 공급을 위한 필수적 과제이다. 미국 플로리다 주 중서부 템파지역에서는 주요 수자원 중 하나인 지하수의 효과적 활용을 위해 지하수위 인공신경망 모델 (GWANN)을 개발하여 피압 대수층과 비피압 대수층에 대한 주 단위 평균 지하수위를 월별로 예측하고 그 결과를 수자원 공급 의사 결정에 반영하고 있다. 본 논문은 템파지역에 대한 GWANN 모델을 이용한 지하수위 예측 시스템을 소개하고 모델의 기후 입력 자료의 민감도를 분석함으로써 양질의 기후 정보에 대한 현 시스템의 활용성을 검토하였다. 2006년과 2007년에 대한 연구 결과, 관측 자료를 최적 예측 시나리오 (the best forecast)로 가정하여 적용한 결과는 지하수위 관측 지점에 따라 큰 차이를 보였지만 일반적으로 현 시스템 (현 시점의 실시간 주 단위 평균 강우량을 향후 4주간 동일하게 적용함) 에 비해 예측 성능이 개선되는 것으로 나타났다. 더불어 강우 관측 자료의 백분위 (percentile forecast; 20분위, 50분위, 80분위)를 강우 예측 자료로 활용한 경우에도 현 시스템과 비교하여 일부 나은 결과를 보여주었다. 그러나 지하수위 예측 모델을 활용하지 않고 현 시점의 지하 수위가 지속된다고 가정하는 경우 (na$\ddot{i}$ve model) 향후 2주간의 예측 결과가 best forecast 경우에 비해 높은 정확도를 보이는 등, GWANN 모델의 단기 예측에 대한 양질의 강우 예측 정보의 활용성은 낮으며, 향후 3주 이상에 대한 예측 성능에 있어 best forecast결과가 na$\ddot{i}$ve model 결과에 비해 높은 정확도를 보이기 시작하는 것으로 나타났다. 또한 GWANN 모델의 예측 성능은 적용 기간과 지역 및 지하대수층의 특성에 따라 큰 다양성을 가지는 단점을 보여 강우 예측 자료 활용에 앞서 모델 개선의 필요성이 있다고 판단된다. 본 연구는 단기수자원 공급 계획 수립을 위하여 사용되는 지역 모델링 시스템에 대한 기후 예측정보의 활용성 평가를 위한 방법론으로 고려될 수 있을 것으로 기대된다.

SVM based Stock Price Forecasting Using Financial Statements (SVM 기반의 재무 정보를 이용한 주가 예측)

  • Heo, Junyoung;Yang, Jin Yong
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.167-172
    • /
    • 2015
  • Machine learning is a technique for training computers to be used in classification or forecasting. Among the various types, support vector machine (SVM) is a fast and reliable machine learning mechanism. In this paper, we evaluate the stock price predictability of SVM based on financial statements, through a fundamental analysis predicting the stock price from the corporate intrinsic values. Corporate financial statements were used as the input for SVM. Based on the results, the rise or drop of the stock was predicted. The SVM results were compared with the forecasts of experts, as well as other machine learning methods such as ANN, decision tree and AdaBoost. SVM showed good predictive power while requiring less execution time than the other machine learning schemes.

The short-term forecasting of correlating remaining volume due to price limits with daily volumes in stock (with kospi 200) (주식의 상한가시 잔량과 일일거래량의 관계를 통한 주가의 단기예측에 관하여(kospi 200종목을 중심으로))

  • 오성민;김성집
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.457-460
    • /
    • 2000
  • 주가를 예측하는 것은 이미 오래 전부터 여러 가지 방법으로 시도되어 왔었다. 기업의 본질가치를 보는 기본적 분석부터 과거의 자료를 가지고 미래를 예측하는 기술적 분석까지 많은 연구가 있었으나 실제로 모든 예측이 그렇듯이 많이 적중을 했다는 것을 일부의 정형화된 분석방법을 제외하고는 찾지 못하였다. 그럼에도 불구하고 이번 연구에서는 기술적 분석에서 많은 요인들 중에서 기존에 많이 연구해 보지 못한 시계열적인 인자를 가지고 단기간의 주가를 예측하고자 한다. 주식이 상한가에 도달하였을 경우 그 상한가격의 잔량과 그 주식의 일일거래량을 비교하여 그 서로 두 관계가 다음날 주가에 어느 정도의 영향을 미치는지 회귀분석을 통하여 상관성을 분석하고 통계적 자료를 토대로 단기간의 주가를 상한 잔량 대비 일일거래량에 비추어 의사결정 지표를 제시하려고 한다. 적절한 예측결과가 나오게 되면 주식에 대해 매수를 희망하는 사람 뿐 아니라 주식을 보유하고 있는 사람에게 어느 정도 정보효과가 미치게 될 것이라 기대한다.

  • PDF