• 제목/요약/키워드: 주가 예측

검색결과 6,594건 처리시간 0.032초

발전용 댐 유입량 예측 정확도 향상을 위한 레이더와 수치예보 예측강우 병합기법 연구 (Study on blending radar and numerical rainfall prediction to improve hydroelectric dam inflow forecasts accuracy)

  • 윤성심;신홍준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.112-112
    • /
    • 2023
  • 발전용댐의 댐 유입량 예측 및 운영을 위해서 (주)한국수력원자력에서는 수자원통합 운영시스템(Water resources Integrated System, WIOS)을 운영 중에 있다. 해당 시스템에서는 댐 유입량을 예측하기 위해서 기상청 수치예보모델 중 하나인 국지예보모델(Local Data Assimilation and Prediction System, LDAPS)의 예측강우를 수문모형의 입력자료로 활용하고 있으며, 레이더 기반의 초단시간 강우예측 기법을 자체 개발 중에 있다. 기상청 국지예보모델은 강우의 on/off에 대한 정확도는 90%를 상회할 만큼 높으나 정량적인 강우량의 정확도는 매우 낮고, 레이더 기반의 초단시간 예측 강우는 선행 1~2시간 예측에서는 정량적 정확도는 높으나, 그 이후 예측성능이 급격히 떨어지는 경향을 보인다. 따라서 댐 유입량의 정량적 예측 정확도를 확보하기 위해 초단시간 모델과 국지예보모델의 강우예측 결과를 병합(blending)하는 기법을 적용하여 초기 6시간 동안의 예측 성능을 향상시켜야 한다. 본 연구에서는 선행시간 0~6시간에 대해서 병합하는 기법들을 적용하고 평가하고자 한다. 기본적으로 병합은 초단시간 예측강우와 수치예보자료 간 가중치를 통해 수행된다. 일반적으로 초기 1시간 선행시간에서 레이더 기반 예측강우는 완벽한 예측자료(외삽 관측자료의 가중치는 1.0)로 가정하며, tanh 함수를 이용하여 선행시간의 증가에 따라 가중치를 감소시키면서, 6시간 선행시간에서는 수치예보 예측강우가 완벽한 예측자료라고 가정한다. 본 연구에서는 일반적인 병합 방법 외에 병합된 예측강우에 과거 관측강우와 예측강우의 평균편이를 적용하여 보정하는 방법, 사례별 변동성이 큰 병합된 예측강우 특성을 고려하여 병합 가중치를 신뢰도에 따라 가변시키는 방법을 적용하여 평가한다. 이를 통해 댐 유입량 예측에 최적이 되는 병합기법을 선정하고자 한다.

  • PDF

한국종합주가지수 변동 경향에 대한 확률적 예측 시스템 (A Probabilistic Forecasting System on the Tendency of Variation of Korea Composite Stock Price Index)

  • 강병우;한동수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (A)
    • /
    • pp.500-504
    • /
    • 2006
  • 본 논문에서 기술하는 연구는 한국종합주가지수(KOSPI)의 장기적 변동 경향에 대한 확률적 예측 시스템을 제안한다. 제안된 방법론은 이미 단백질 상호작용 예측 시스템과 스트레스 확률 예측 시스템 등에 적용되어 유효성이 입증된 방법으로, 이미 알려진 데이터를 바탕으로 다양한 요인들의 가능한 모든 조합에 대한 경우의 수를 고려한 학습 결과에 기반하여 새로이 주어진 대상의 요인들을 분석해서 학습시 사용된 특정 군(class)에 속할지의 여부를 확률적으로 나타내준다. 이 방법론을 구현하기 위해 실제 과거 주가지수 데이터를 수집하여 CI(Combination Interrelation)행렬을 구현하였으며, 현재 진행중인 검증작업에 대해서도 기술하였다.

  • PDF

대규모 언어 모델 기반 한국어 휴지 예측 연구 (A Study on Korean Pause Prediction based Large Language Model)

  • 나정호;이정;나승훈;정정범;최맹식;이충희
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.14-18
    • /
    • 2023
  • 본 연구는 한국어 음성-텍스트 데이터에서 보편적으로 나타난 휴지의 실현 양상을 분석하고, 이를 토대로 데이터셋을 선별해 보편적이고 규격화된 한국어 휴지 예측을 위한 모델을 제안하였다. 이를 위해 전문적인 발성 훈련을 받은 성우 등의 발화가 녹음된 음성-텍스트 데이터셋을 수집하고 MFA와 같은 음소 정렬기를 사용해 휴지를 라벨링하는 등의 전처리를 하고, 다양한 화자의 발화에서 공통적으로 나타난 휴지를 선별해 학습데이터셋을 구축하였다. 구축된 데이터셋을 바탕으로 LLM 중 하나인 KULLM 모델을 미세 조정하고 제안한 모델의 휴지 예측 성능을 평가하였다.

  • PDF

분류 알고리즘 기반 주문 불균형 정보의 단기 주가 예측 성과 (Classification Algorithm-based Prediction Performance of Order Imbalance Information on Short-Term Stock Price)

  • 김선웅
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.157-177
    • /
    • 2022
  • 투자자들은 증권회사가 제공하는 시세표인 Limit Order Book 정보를 통해 국내외 투자자들이 제출하는 주문 정보를 실시간으로 파악하면서 거래에 참여하고 있다. Limit Order Book에 실시간으로 공개되고 있는 주문 정보가 주가 예측에서 유용성이 있을까? 본 연구는 장 중 투자자들의 매수와 매도 주문이 어느 한쪽으로 쏠리면서 주문 불균형이 나타나는 경우 미래 주가 등락의 예측 변수로서 유의성이 있는지를 분석하는 것이다. 분류 알고리즘을 이용하여 주문 불균형 정보의 당일 종가 등락에 대한 예측 정확도를 높이고, 예측 결과를 이용한 데이트레이딩 전략을 제안하며 실증분석을 통해 투자 성과를 분석한다. 자료는 2004년 1월 19일부터 2022년 6월 30일까지의 4,564일 동안의 코스피200 주가지수선물 5 분 봉 주가를 분석하였다. 실증분석 결과는 다음과 같다. 첫째, 총매수 주문량과 총매도 주문량의 불균형 정도로 측정하는 주문 불균형지수와 주가는 유의적 상관성을 보인다. 둘째, 주문 불균형 정보는 당일 종가까지의 미래 주가 등락에 대해서도 유의적인 영향력이 나타났다. 셋째, 주문 불균형 정보를 이용한 당일 종가 등락의 예측 정확도는 Support Vector Machines 알고리즘이 54.1%로 가장 높게 나타났다. 넷째, 하루 중 이른 시점에서 측정한 주문 불균형지수가 늦은 시점에서 측정한 주문 불균형지수보다 예측 정확성이 더 높았다. 다섯째, 종가 등락 예측 결과를 이용한 데이트레이딩 전략의 투자 성과는 비교모형의 투자 성과보다 높게 나타났다. 여섯째, 분류 알고리즘을 이용한 투자 성과는 K-Nearest Neighbor 알고리즘을 제외하면 모두 비교모형보다 총수익 평균이 높게 나타났다. 일곱째, Logistic Regression, Random Forest, Support Vector Machines, XGBoost 알고리즘의 예측 결과를 이용한 데이트레이딩 전략의 투자 성과는 수익성과 위험성을 동시에 평가하는 샤프비율에서도 비교모형보다 높은 결과를 보여주었다. 본 연구는 Limit Order Book 정보 중 총매수 주문량과 총매도 주문량 정보의 경제적 가치가 존재함을 밝혔다는 점에서 기존의 연구와 학술적 차별점을 갖는다. 본 연구의 실증분석 결과는 시장 참여자들에게 투자 전략적 측면에서 함의가 있다고 판단된다. 향후 연구에서는 최근 활발히 연구가 진행되고 있는 딥러닝 모형 등으로의 확장을 통해 주가 예측의 정확도를 높임으로써 데이트레이딩 투자전략의 성과를 개선할 필요가 있다.

Prototype 모델 MDU의 신뢰도 예측

  • 김주년;정혜승;이재득
    • 항공우주기술
    • /
    • 제4권1호
    • /
    • pp.203-210
    • /
    • 2005
  • KSLV-I에 탑재를 위한 주 데이터 장치(MDU)의 초기개발모델이 제작되었으며 인터페이스시험이 수행되었다. MDU의 엔지니어링 및 비행모델 제작을 수행하기 이전에 MDU 초기 모델에 대한 발사체 탑재 가용성을 확인하기 위하여 신뢰도 예측을 수행하였다. 본 논문은 전장품의 신뢰도 예측에 활용되는 MIL-HDBK-217F를 근간으로 MDU 개발 모델의 신뢰도 예측 방법에 대해 기술하였으며 신뢰도 예측결과를 기술하고 있다.

  • PDF

VVC 화면내 예측 및 부호화 주요 기술

  • 한희지;최재륜;권대혁;최해철
    • 방송과미디어
    • /
    • 제24권4호
    • /
    • pp.39-54
    • /
    • 2019
  • VVC(Versatile Video Coding)는 국제 표준화 단체인 JVET(Joint Video Exports Team)에서 표준화가 진행되고 있는 새로운 국제 비디오 부호화 표준이다. 이 표준화에서는 기존 최신 비디오 부호화 표준인 HEVC(High Efficiency Video Coding)/H.265 대비 2배 이상의 부호화 성능을 목표로 다양한 부호화 방법들이 논의되고 있다. 본 고에서는 VVC의 새로운 부호화 모드 중 화면내 예측(intra prediction) 부호화 방법에 대해 소개한다. 화면내 예측은 현재 부호화를 진행하려는 블록의 주변에 이미 재구성된 샘플들을 참조하여 현재 블록을 예측하는 방법이다. 이 화면내 부호화 방법은 화면간 예측(inter prediction) 부호화 방법과 함께 부호화 효율 향상에 기여할 뿐만 아니라, 임의 접근(random access)을 가능하게 하고 부호화된 비트스트림의 에러 내성을 높인다. VVC는 화면내 부호화 예측 모드 종류를 최대 87개까지 확장하고 다양한 화면내 부호화 방법을 채택함으로써 기존 비디오 부호화 표준에 비해 높은 부호화 효율을 갖는다. 본 고에서는 VVC에 채택된 주요 화면내 부호화 방법들을 소개한다.

산업군별 온라인 뉴스에 기초한 감성 예측변수를 포함하는 심층 신경망모형에 의한 주가 예측 (Prediction of stock prices using deep neural network models including an emotional predictor based on online news by industrial groups)

  • 임준형;손영숙
    • 응용통계연구
    • /
    • 제33권4호
    • /
    • pp.483-497
    • /
    • 2020
  • 본 연구에서는 심층 신경망모형을 사용하여 KOSPI 100의 개별 종목인 기아차 및 신세계의 주가를 예측하였다. 예측변수로는 흔히 사용되었던 기술적 변수들과 함께 온라인 뉴스로부터 도출된 감성변수를 사용하였다. 특히 소셜 네트워크 분석을 활용하여 분류된 산업군에 특화된 감성사전을 구축한 후, 감성분석을 통하여 산업군에 속하는 각 기업들의 감성점수의 평균을 산업군 감성변수로 생성하였다. 여러 예측변수들의 조합으로 이루어진 모형들 중에서 기술적 변수와 산업군의 온라인 뉴스에 기초한 감성변수를 함께 사용하였을 때 우수한 예측력과 수익률을 보여주었다.

FIDES의 품질 보증 인자에 대한 신뢰도 예측 비교 분석 (Comparative Analysis of Reliability Predictions for Quality Assurance Factors in FIDES)

  • 윤철환;서진욱;정성근;오현웅
    • 항공우주시스템공학회지
    • /
    • 제18권2호
    • /
    • pp.21-28
    • /
    • 2024
  • 최근 뉴스페이스 시대라고 불릴 만큼 우주 산업 분야는 점점 커져가고 있으며, 초소형 위성의 중요성도 또한 커지는 추세이다. 초소형 위성은 주로 COTS 부품을 사용하며 우주급 부품에 비해 낮은 신뢰도를 가지고 있지만 개발 기간, 비용, 성능 측면에서 장점을 가지고 있어 사용성이 확대되고 있다. COTS(Commercial Off-The-Shelf)는 상용으로 판매되는 제품을 가리키며, 이는 특정 조직이나 프로젝트에서 직접 제작하는 대신 시장에서 구입하여 사용되는 것을 의미한다. 위성은 발사되는 순간부터 수리가 불가능 하기 때문에 신뢰도 예측의 중요성은 크게 작용한다. 근래에는 신뢰도 예측 시 부품에 대한 인자 뿐만 아니라 시스템 level에서의 신뢰도를 예측하는 것이 더 중요하게 적용되고 있다. 따라서 본 연구에서는 신뢰도 예측 규격인 MIL-HDBK-217F와 업데이트된 RiAC-HDBK-217Plus와 FIDES를 비교해 본다. 그리고 FIDES 예측 기준에서 다양한 산업 분야에 적용될 수 있도록 구성한 제조업체의 품질 보증 요소를 세분화하여 우주 산업에 적합한 점수가 반영될 수 있도록 하였다.

거시지표와 딥러닝 알고리즘을 이용한 자동화된 주식 매매 연구 (A Research on stock price prediction based on Deep Learning and Economic Indicators)

  • 홍성혁
    • 디지털융복합연구
    • /
    • 제18권11호
    • /
    • pp.267-272
    • /
    • 2020
  • 거시경제는 한 나라 경제 전체의 움직임을 보여주기 때문에 주식을 분석할 때 선행되어 분석되는 지표 중 하나이다. 실업률, 이자율, 물가, 국민소득, 환율, 통화량, 국제수지 등 국가차원의 경제 상황 전반은 주식시장에 직접적인 영향을 미치고, 경제 지표는 개별 주가와의 상관관계가 있기 때문에 주식을 예측하기 위해 많은 증권사 애널리스트들이 관심 있게 지켜보고, 개별 주가에 영향을 고려하여 매수와 매도를 판단하는 주요한 근거자료가 되고 있다. 주가에 영향을 미치는 경제 지표를 선행지표로 분석하고, 주가예측을 딥러닝 기반의 예측을 통하여 예측 후 실제 주가를 비교하여 차이가 발생하면 거시지표에 대한 가중치를 조절하여 지속적인 반복학습을 통하여 주식의 매수와 매도를 판단한다면, 주식은 더 이상 도박과 같은 투기가 아닌 건전한 투자가 될 수 있다. 따라서 본 연구는 거시지표와 인공지능의 딥러닝 알고리즘방식을 이용하여 자동화된 주식매매가 가능하도록 연구를 수행하였다.