• Title/Summary/Keyword: 좌굴파괴

Search Result 113, Processing Time 0.019 seconds

Cyclic Seismic Performance of RBS Weak-Axis Welded Moment Connections (RBS 약축 용접모멘트접합부의 내진성능 평가)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.513-523
    • /
    • 2015
  • In steel moment frames constructed of H-shapes, strong-axis moment connections should be used for maximum structural efficiency if possible. And most of cyclic seismic testing, domestic and international, has been conducted for strong-axis moment connections and cyclic test data for weak-axis connections is quite limited. However, when perpendicular moment frames meet, weak-axis moment connections are also needed at the intersecting locations. Especially, both strong- and weak-axis moment connections have been frequently used in domestic practice. In this study, cyclic seismic performance of RBS (reduced beam section) weak-axis welded moment connections was experimentally investigated. Test specimens, designed according to the procedure proposed by Gilton and Uang (2002), performed well and developed an excellent plastic rotation capacity of 0.03 rad or higher, although a simplified sizing procedure for attaching the beam web to the shear plate in the form of C-shaped fillet weld was used. The test results of this study showed that the sharp corner of C-shaped fillet weld tends to be the origin of crack propagation due to stress concentration there and needs to be trimmed for the better weld shape. Different from strong-axis moment connections, due to the presence of weld access hole, a kind of CJP butt joint is formed between the beam flange and the horizontal continuity plate in weak-axis moment connections. When weld access hole is large, this butt joint can experience cyclic local buckling and subsequent low cycle fatigue fracture as observed in this testing program. Thus the size of web access hole at the butt joint should be minimized if possible. The recommended seismic detailing such as stickout, trimming, and thicker continuity plate for construction tolerance should be followed for design and fabrication of weak-axis welded moment connections.

Evaluation of Local Damages and Residual Performance of Blast Damaged RC Beams Strengthened with Steel Fiber and FRP Sheet (폭발 손상을 입은 강섬유 및 FRP 시트 보강 철근콘크리트 보의 국부손상 및 잔류성능 평가)

  • Lee, Jin-Young;Jang, Dae-Sung;Kwon, Ki-Yeon;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.627-634
    • /
    • 2014
  • In this study, standoff detonation tests and static beam tests on $160{\times}290{\times}2200mm$ RC beams were conducted to investigate the effect of local damage on the flexural strength and ductility index. And also, blast resistance of RC beams strengthened with steel fiber and FRP sheet were evaluated by these tests. The standoff detonation tests were performed with charge weight of 1kg and standoff distance of 0.1m. After the tests, crater diameters and loss weights of specimens were measured to evaluate the local damage of specimens. Flexural strength and ductility index were measured by conducting the static beam tests on the damaged and undamaged specimens. As a test results, normal concrete specimen(NC) showed relatively large crater and spall diameters that caused weight loss of 23.5kg as a local damage. Whereas, steel fiber reinforced concrete specimen(SFRC) and FRP sheet retrofitted specimens(NC-F, NC-FS) showed higher blast resistance than NC by reducing crater size and weight loss. Flexural strength and ductility index were decreased in case of local damaged specimens by detonation. Especially, large decrease of flexural strength was shown in NC as compared with intact specimen and brittle failure was occurred due to buckling of compressive reinforcement. In case of specimens strengthened with steel fiber and FRP sheet, residual flexural strength and ductility index were increased as compared with NC. In these results, it is concluded that critical local damage can be occurred unless enough standoff distance can be assured even if the charge weight is small. and it is verified that strengthening method using steel fiber and FRP sheet can increase blast resistance.

Cyclic Behavior of Wall-Slab Joints with Lap Splices of Coldly Straightened Re-bars and with Mechanical Splices (굽힌 후 편 철근의 겹침 이음 및 기계적 이음을 갖는 벽-슬래브 접합부의 반복하중에 대한 거동)

  • Chun, Sung-Chul;Lee, Jin-Gon;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Steel Plate for Rebar Connection was recently developed to splice rebars in delayed slab-wall joints in high-rise building, slurry wall-slab joints, temporary openings, etc. It consists of several couplers and a thin steel plate with shear key. Cyclic loading tests on slab-wall joints were conducted to verify structural behavior of the joints having Steel Plate for Rebar Connection. For comparison, joints with Rebend Connection and without splices were also tested. The joints with Steel Plate for Rebar Connection showed typical flexural behavior in the sequence of tension re-bar yielding, sufficient flexural deformation, crushing of compression concrete, and compression rebar buckling. However, the joints with Rebend Connection had more bond cracks in slabs faces and spalling in side cover-concrete, even though elastic behavior of the joints was similar to that of the joints with Steel Plate for Re-bar Connection. Consequently, the joints with Rebend Connection had less strengths and deformation capacities than the joints with Steel Plate for Re-bar Connection. In addition, stiffness of the joints with Rebend Connection degraded more rapidly than the other joints as cyclic loads were applied. This may be caused by low elastic modulus of re-straightened rebars and restraightening of kinked bar. For two types of diameters (13mm and 16mm) and two types of grades (SD300 and SD400) of rebars, the joints with Steel Plate for Rebar Connection had higher strength than nominal strength calculated from actual material properties. On the contrary, strengths of the joints with Rebend Connection decreased as bar diameter increased and as grade becames higher. Therefore, Rebend Connection should be used with caution in design and construction.