• Title/Summary/Keyword: 좌굴내력

Search Result 115, Processing Time 0.031 seconds

A Study on the Characteristics of High Tensile Strength Steel(SM570) Plates in Compression Members (고장력(SM570)강재의 압축재 특성에 관한 연구)

  • Im, Sung-Woo;Ko, Sang-Ki;Chang, In-Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.223-232
    • /
    • 2001
  • Column tests subjected to compressive loading were carried out for the estimation of compression buckling strength of steel plate SM570 in beam-column member under high axial load. It was found that the maximum strength of column member was determined by local buckling when satisfied with a limit of width-to-thickness ratio in current steel structure design specifications, but decreased suddenly by local buckling before the maximum strength in case of not satisfying with that ratio. Also, the compression buckling strength of SM570 plate was higher than the design specification value of 4$4.1tonf/cm^2$.

  • PDF

A Study on the Evaluation of Member Buckling Performance of Space Frame Structures (스페이스 프레임 구조물의 부재좌굴성능 평가방안 연구)

  • Kang, Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.176-182
    • /
    • 2018
  • The purpose of this study was to investigate the safety and rationality of buckling strength and length coefficient by comparing with the design standards of domestic and foreign compression materials based on the buckling test results of circular steel pipe with ball joints. The types of round steel pipes selected for buckling performance evaluation were ø$48.6{\times}2.8t$, ø$60.5{\times}3.2t$ and ø$76.3{\times}3.2t$. For the design of domestic and foreign compression materials, Korea 's Load Resistance and Factor Design, Japan' s Limit State Design, and British Standard BS5950 standard were applied. In this study, we compared and analyzed the buckling performance between the experimental results of the previous research and the domestic and foreign design standards. The results were summarized as follows. As a result of applying the full length of the member to the buckling length in the compression materials design standards of each country, it was 64-89% of the buckling strength by the experiment. Therefore, it is deemed desirable to perform the member design according to the current design standard formula for safety. Experimental results show that the measured buckling strength was 1.02-1.43 times higher than the buckling strength of pure cylindrical steel tubes in the design standards of Korea, Japan and the United Kingdom compression materials. Consequently, it seemed that the buckling strength of individual member in the design of space frame structure should be considered buckling coefficient as the length of pure round steel pipe rather than the length of inter-node.

A Study on the Buckling Strength and Effective Length of Tubular Member with Gusset Plate Considering End Restraints (단부구속효과를 고려한 관통 가셋트 부착 강관부재의 좌굴내력 및 유효세장비 산정에 관한 연구)

  • Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.159-165
    • /
    • 2003
  • A tubular member with through-gusset plate is often used to transmit axial compression in an electric transmission towers. In current code, the strength of tubular member is evaluated with an effective length factor k=0.9 without considering the deformation of boundary element. A buckling strength of member with end gusset plate is affected by stiffness ratio($\beta$) and the length ratio(G) between main tubular member and end gusset plate. In this study theoretical mechanism based on the elastic buckling behavior was investigated, and finite element analysis was performed to propose a formula for the buckling strength and effective length factor of tubular member in elsatic and inelastic ranges.

A Proposal for Strength Formula of Web Crippling in Trapezoidal Sheeting (데크플레이트의 웨브국부좌굴에 관한 내력식 제안)

  • Shin, Tae Song
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.641-649
    • /
    • 2001
  • It is proposed in this paper the practical load carrying capacity formula for web crippling in trapezoidal sheeting (deckplate). The parameter functions are derived by investigation of the major parameters influencing of load carrying capacity based on the existing theoretical research with experiment analogical interpretation model. The simple strength formula is proposed in analytic comparison of each parameters with the existing experimental data. From statistical evaluations due to Annex Z of Eurocode 3 the partial safety resistance factors ${\gamma}_M$ are calculated and compared with the target value of 1.1.

  • PDF

Nonlinear Finite Element Analysis on Global and Distortional Buckling of Cold-Formed Steel Members (냉간성형강재의 전체좌굴 및 뒤틀림좌굴에 대한 비선형유한요소해석)

  • Kang, Hyun Koo;Rha, Chang Soon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • This paper presents modelling approaches for the global and distortional buckling of cold-formed built-up steel sections using the finite element software packages, ANSYS and ABAQUS. Thin thickness of the cold-formed steel causes nonlinear behaviour due to local and distortional buckling, thus careful consideration is required in modelling for numerical analysis. Implicit static modelling using ANSYS provides unstable numerical results as the load approaches the limit point but explicit dyamic modelling with ABAQUS is able to display the behaviour even in post-buckling range. Meanwhile, axial load capacities obtained from the numerical analysis show higher values than the experimental axial capacities, due to eccentricity during the test. Axial capacities of the cold-formed steel obtained through numerical analysis requires reduction factor, and this paper suggests 0.88 for the factor.

The Bucking Strength and the Application of design of Design Formula of High Strength H-Shaped Section Steel Members (고강도 H형강 부재의 좌굴내력과 설계식에의 적용에 관한 연구)

  • Kim, Jin Kyong;Kim, Hee Dong;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.123-131
    • /
    • 2001
  • The objective of this study is to investigate the criteria of the width-to-thickness ratio and to evaluate the buckling strength of high strength steel beam-columns and to compare their buckling strength with design codes, which are the Limit State Design code and the Allowable Stress Desogn code(drift). SM520TMC and SM570Q class steels are used for high strength steels. The coupon test and the stub column test were carried out to investigate the properties of high strength steels and the stress-strain curves of stub columns. The buckling strength of high strength steel beam-columns are assessed by numerical analysis used axial force, moment and curvature relationships.

  • PDF

Cyclic Local Buckling Behavior of Steel Members with Web Opening (유공 강구조 부재의 반복 국부좌굴거동)

  • Lee, EunTaik;Ko, KaYeon;Kang, JaeHoon;Chang, KyoungHo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.423-433
    • /
    • 2003
  • Many study have been performed to describe the elastic and inelastic behavior of H-shaped beams with web openings that generally concentrated on the monotonic loading condition and concentric web opening. The findings of the studies led Darwin to propose formulas for the design of beams with web openings considering local buckling. While the formulas are simple and useful in real situation, more studies arc needed on their cyclic loading condition. In this experimental study, 12 H-shaped beams with web openings under cyclic loading condition were investigated. The dimension criteria based on the formulas proposed by Darwin were examined. The suitability of existing design formulas and the effects of plastic hinges on beams with web openings and of local buckling around web openings on the beam strength under cyclic loading were also studied. This was done by observing their behavior with various dimensional openings, eccentric per cent, and stiffeners.

The elastic bucking strength of axially compressed tubular member with through-gusset connection (관통한 가셋트판이 부착된 압축 강관 부재의 탄성좌굴내력)

  • Kim, Woo-Bum;Lim, Ji-Youn
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.2
    • /
    • pp.133-141
    • /
    • 2001
  • A tubular member holding an axially through-gusset connection is often used to transmit axial compression in a steel truss structures. The elastic buckling loads of the member is affected by the stiffness ratio($\beta$) and the length ratio(G) because of two elements with different properties. In current code, however, the strength is evaluated with an effective length factor k=0.9 without considering the above effect. Therefore this study analyzed a theoretical mechanism based on the elasticity theory and performed a finite element analysis to investigate the influence parameters on the elastic buckling strength of axially loaded member.

  • PDF

Strength of Concrete-Filled Rectangular Steel Tubular Columns (콘크리트 충전 각형강관 기둥의 내력 평가)

  • Yoo, Yeong Chan;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.89-98
    • /
    • 1999
  • The objective of this paper is to investigate the structural behavior of concrete filled steel tubular columns subjected to eccentric load. With experiment and analytical study, the buckling behavior of columns is investigated and compared with each other to the view of main parameters. Appling foreign standards in the experimental results, we suggested new strength formula of concrete-filled steel tubular columns. The parameters are slenderness, eccentric ratio, and concrete filled or not. The experiment are carried out by simple loading.

  • PDF

Ultimate Strength of Fillet-welded T-joints in Cold-formed Square Hollow Sections-chord web failure mode (냉간성형 각형강관 모살용접 T형 접합부의 최대내력(II)-주관웨브 파괴모드-)

  • Bae, Kyu Woong;Park, Keum Sung;Kang, Chang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.403-411
    • /
    • 2002
  • This paper described the ultimate strength and deformation limit of welded T-joints in cold-formed square hollow sections. Previous studies showed that the T-joint has an obvious peak load. with the failure mode of chord-web buckling at a ratio of branch width to chord width ($\beta$) of above 0.8. Similar to a T-joint with chord-flange failure mode, the strength at a certain deformation limit can be regarded as the ultimate strength of a T-joint Based on the experimental results including tests done by Kato and Zhao, the deformation limit was proposed as 3%B for $10.7{\leq}2{\gamma}(B/T){\leq}42.3$ and $0.8{\leq}{\beta}{\leq}1.0$. The strength formula of CIDECT and those of other researchers were also compared with the test results. Finally, the strength formula based on the column buckling was proposed.