• Title/Summary/Keyword: 종점노드도착조건

Search Result 1, Processing Time 0.016 seconds

A Link-Label Based Node-to-Link Optimal Path Algorithm Considering Non Additive Path Cost (비가산성 경로비용을 반영한 링크표지기반 Node-to-Link 최적경로탐색)

  • Lee, Mee Young;Nam, Doohee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.91-99
    • /
    • 2019
  • Existing node-to-node based optimal path searching is built on the assumption that all destination nodes can be arrived at from an origin node. However, the recent appearance of the adaptive path search algorithm has meant that the optimal path solution cannot be derived in node-to-node path search. In order to reflect transportation data at the links in real-time, the necessity of the node-to-link (or link-to-node; NL) problem is being recognized. This research assumes existence of a network with link-label and non-additive path costs as a solution to the node-to-link optimal path problem. At the intersections in which the link-label has a turn penalty, the network retains its shape. Non-additive path cost requires that M-similar paths be enumerated so that the ideal path can be ascertained. In this, the research proposes direction deletion and turn restriction so that regulation of the loop in the link-label entry-link-based network transformation method will ensure that an optimal solution is derived up until the final link. Using this method on a case study shows that the proposed method derives the optimal solution through learning. The research concludes by bringing to light the necessity of verification in large-scale networks.