• Title/Summary/Keyword: 종분포모형

Search Result 18, Processing Time 0.022 seconds

Mapping Mammalian Species Richness Using a Machine Learning Algorithm (머신러닝 알고리즘을 이용한 포유류 종 풍부도 매핑 구축 연구)

  • Zhiying Jin;Dongkun Lee;Eunsub Kim;Jiyoung Choi;Yoonho Jeon
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.53-63
    • /
    • 2024
  • Biodiversity holds significant importance within the framework of environmental impact assessment, being utilized in site selection for development, understanding the surrounding environment, and assessing the impact on species due to disturbances. The field of environmental impact assessment has seen substantial research exploring new technologies and models to evaluate and predict biodiversity more accurately. While current assessments rely on data from fieldwork and literature surveys to gauge species richness indices, limitations in spatial and temporal coverage underscore the need for high-resolution biodiversity assessments through species richness mapping. In this study, leveraging data from the 4th National Ecosystem Survey and environmental variables, we developed a species distribution model using Random Forest. This model yielded mapping results of 24 mammalian species' distribution, utilizing the species richness index to generate a 100-meter resolution map of species richness. The research findings exhibited a notably high predictive accuracy, with the species distribution model demonstrating an average AUC value of 0.82. In addition, the comparison with National Ecosystem Survey data reveals that the species richness distribution in the high-resolution species richness mapping results conforms to a normal distribution. Hence, it stands as highly reliable foundational data for environmental impact assessment. Such research and analytical outcomes could serve as pivotal new reference materials for future urban development projects, offering insights for biodiversity assessment and habitat preservation endeavors.

Complimentary Assessment for Conserving Vegetation on Protected Areas in South Korea (보호지역의 식물종 보전 상보성 평가)

  • Park, Jin-Han;Choe, Hyeyeong;Mo, Yongwon
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.5
    • /
    • pp.436-445
    • /
    • 2020
  • The number of protected areas has been steadily increased in Korea to achieve Aichi Target 11, and there are studies on potential protected areas that required additional designation. However, there has been an insufficient assessment of the complementarity of protected areas to conserve biodiversity effectively. This study identified the potential habitat areas using the species distribution model for plant species from the 3rd National Ecosystem Survey and compared the plant species abundance in the existing protected area and the potential protected areas using the similarity indices, such as the Jaccard index, Sorenson index, and Bray-Curtis index. As a result, we found that the complementarity of the existing protected areas and most potential protected areas were low, leading to the preservation of similar plant species. Only the buffer zone for Korea National Arboretum had high complementarity and thus is important to conserve some species with the other protected areas. This study confirmed that it was necessary to select additional protected areas outside the existing or potential protected areas to protect plant species with a low inclusion ratio of potential habitats within the protected area. This study is significant because it identified the ecological representativeness of each protected area to examine if the individual protected area can conserve unique and various species and proposed a method of finding candidate areas for additional conservation spatially. The findings of this study can be a valuable reference for the qualitative improvement of protected areas through the complementarity assessments, including animals and the effectiveness assessment study of protected areas using the National Ecosystem Survey data in the future.

A nationwide analysis of mammalian biodiversity hotspots in South Korea (전국단위의 포유류 생물다양성우수지역 분석 연구)

  • Kim, Jiyeon;Kwon, Hyuksoo;Seo, Changwan;Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.6
    • /
    • pp.453-465
    • /
    • 2014
  • Hotspots are top sites in terms of species diversity as the most threatened and most diverse sites which have been used to select priority areas for reserves. The purpose of this paper is to identify biodiversity hotspots through analyzing nationwide spatial patterns of species richness and rarity of Korean mammals. Four endangered mammals and eleven common mammals were selected as target species. Environmental variables as model input data were consisted of topography, distance, and vegetation structure etc. and Maxent was used to develop species distribution models for target species. Species richness and rarity were used as index of biodiversity. The results of this study were as follows. Firstly, hotspots of species richness for endangered mammals were in high elevation and steep mountain areas. However, species richness for whole mammals were high in low elevation of mountains. Secondly, distribution pattern of species rarity for endangered mammals were similar as richness. However, hotspots of species rarity for whole mammals were a little different from species richness. Species rarity was high in both low and high elevation of mountain areas. This study will provide the useful information for a biodiversity assessment, a habitat conservation, a national ecological network plan, and the management of protected areas.

Analyzing Priority Management Areas for Domestic Cats (Felis catus) Using Predictions of Distribution Density and Potential Habitat (고양이(Feliscatus)의 분포밀도와 잠재서식지 예측을 이용한 우선 관리 대상 지역 분석)

  • Ahmee Jeong;Sangdon Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.545-555
    • /
    • 2023
  • This study aimed to predict the distribution density and potential habitat of domestic cats (Felis catus) in order to identify core distribution areas. It also aimed to overlay protected areas to identify priority areas for cat management. Kernel density estimation was used to determine the distribution density, and areas with high density were classified in Greater Seoul, Chungnam, Daejeon, and Daegu. Elevation, distance from the used area and roughness were identified as important variables in predicting potential habitat using the MaxEnt model. In addition, the classification of suitable and unsuitable areas based on thresholds showed that the predicted presence of habitat was more extensive in Seoul, Sejong, Daejeon, Chungnam, and Daegu. Core distribution areas were selected by overlapping high-density areas with suitable areas. Priority management areas were identified by overlaying core distribution areas with designated wildlife sanctuaries. As a result, Gyeonggi, and Chungnam have the largest areas. In addition, buffer zones will be implemented to effectively manage the core distribution area and minimize the potential for additional introductions in areas of high management priority, such as protected areas. These results can be used as a basis for investigating the status of the cat's habitat and developing more effective management strategies.

Distribution Patterns and Ecological Characters of Paulownia coreana and P. tomentosa in Busan Metropolitan City Using MaxEnt Model (MaxEnt 모형을 활용한 부산광역시 내 오동나무 및 참오동나무의 분포 경향과 생태적 특성)

  • Lee, Chang-Woo;Lee, Cheol-Ho;Choi, Byoung-Ki
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.2
    • /
    • pp.87-97
    • /
    • 2017
  • Paulownia species has long been recognized in Korean traditional culture and the values of the species have been researched in various focuses. However, studies on distribution and ecological characteristics of the species are still needed. This study aimed to identify distribution trends and ecological characteristics of two Paulownia species in Busan metropolitan city using the MaxEnt model. The MaxEnt model was established based on the environmental factors such as positioning information of the Paulownia species, topography, climate and degree of anthropogenic disturbance potentiality (ADP), which was collected in the on-site research. The study verified that the accuracy of the model was appropriate as the AUC value of Paulownia coreana and P. tomentosa was 0.809, respectively. In terms of the distribution trends of the two Paulownia species in the research area depending on the distribution model, they were both mainly distributed in downtown where built-up area and bare ground were densely concentrated. The potential distribution area of the two species was identified as $137.4km^2$ for P. coreana and $135.0km^2$ for P. tomentosa. The distribution probability was high in Jung-gu, Dongrae-gu, Busanjin-gu and Yeonje-gu. As a result of the analysis on contribution of the environmental factors, it was turned out that the degree of anthropogenic disturbance potentiality (ADP) contributed to distribution of P. coreana and P. tomentosa by about 50%, and the contribution of the environmental factors had a positive correlation with the degree of ADP. The elevation had a negative correlation with both the two species, which was considered because the species must compete more with native species in natural habitats as the altitude above sea level rises. The research findings demonstrated numerically that the distribution of P.coreana and P. tomentosa depended on artificial activities, and indicated the relevance with the Korean traditional landscape. These findings are expected to provide meaningful information in using, preserving and restoring Paulownia species.

Predicting the suitable habitat of the Pinus pumila under climate change (기후변화에 의한 눈잣나무의 서식지 분포 예측)

  • Park, Hyun-Chul;Lee, Jung-Hwan;Lee, Gwan-Gyu
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.5
    • /
    • pp.379-392
    • /
    • 2014
  • This study was performed to predict the future climate envelope of Pinus pumila, a subalpine plant and a Climate-sensitive Biological Indicator Species (CBIS) of Korea. P. pumila is distributed at Mt. seorak in South Korea. Suitable habitat were predicted under two alternative RCPscenarios (IPCC AR5). The SDM used for future prediction was a Maxent model, and the total number of environmental variables for Maxent was 8. It was found that the distribution range of P. pumila in the South Korean was $38^{\circ}7^{\prime}8^{{\prime}{\prime}}N{\sim}38^{\circ}7^{\prime}14^{{\prime}{\prime}}N$ and $128^{\circ}28^{\prime}2^{{\prime}{\prime}}E{\sim}128^{\circ}27^{\prime}38^{{\prime}{\prime}}E$ and 1,586m~1,688m in altitude. The variables that contribute the most to define the climate envelope are altitude. Climate envelope simulation accuracy was evaluated using the ROC's AUC. The P. pumila model's 5-cv AUC was found to be 0.99966. which showed that model accuracy was very high. Under both the RCP4.5 and RCP8.5 scenarios, the climate envelope for P. pumila is predicted to decrease in South Korea. According to the results of the maxent model has been applied in the current climate, suitable habitat is $790.78km^2$. The suitable habitats, are distributed in the region of over 1,400m. Further, in comparison with the suitable habitat of applying RCP4.5 and RCP8.5 suitable habitat current, reduction of area RCP8.5 was greater than RCP4.5. Thus, climate change will affect the distribution of P. pumila. Therefore, governmental measures to conserve this species will be necessary. Additionally, for CBIS vulnerability analysis and studies using sampling techniques to monitor areas based on the outcomes of this study, future study designs should incorporate the use of climatic predictions derived from multiple GCMs, especially GCMs that were not the one used in this study. Furthermore, if environmental variables directly relevant to CBIS distribution other than climate variables, such as the Bioclim parameters, are ever identified, more accurate prediction than in this study will be possible.

Predicting the Potential Habitat, Host Plants, and Geographical Distribution of Pochazia shantungensis (Hemiptera: Ricaniidae) in Korea (갈색날개매미충(Pochazia shantungensis) (Hemiptera: Ricaniidae)의 기주식물, 발생지역 및 잠재서식지 예측)

  • Kim, Dong Eon;Lee, Heejo;Kim, Mi Jeong;Lee, Do-Hun
    • Korean journal of applied entomology
    • /
    • v.54 no.3
    • /
    • pp.179-189
    • /
    • 2015
  • In 2014, surveys were conducted in Korea to study the geographical distribution, host plants, and potential habitats of Pochazia shantungensis. The occurrence of P. shantungensis was confirmed in 43 cities and counties nationwide, and identified for the first time in Gyeongsangbuk-do. P. shantungensis has a wide range of diverse host plants comprising 113 species in 53 families, including crops, fruits, and forest trees. Since the hemipteran was first reported in Korea, 138 species from 62 families have been identified as P. shantungensis host plants. This insect feeds on the following major host plants: Malus pumila, Aralia elata, Styrax japonicus, Salix gracilistyla, Broussonetia kazinoki, Albizia julibrissin, Ailanthus altissima, Castanea crenata, Robinia pseudoacacia, and Cornus officinalis. Potential habitat was analyzed in the present study using the Maxent model with 12 variables (8 climate, 1 land cover, 1 forest type, 1 ecological zoning, and 1 distance). The model ROC AUC was 0.884, indicating a high accuracy. In the present study, precipitation of warmest quater, mean temperature of warmest quarter, forest type, and land cover were the most significant factors affecting P. shantungensis distribution, and habitat.

Effects of Climatic Factors on the Nationwide Distribution of Wild Aculeata (Insecta: Hymenoptera) (전국 야생 벌목 분포에 대한 기후요인 영향 연구)

  • Yu, Dong-Su;Kwon, Oh-Chang;Shin, Man-Seok;Kim, Jung-Kyu;Lee, Sang-Hun
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.303-317
    • /
    • 2022
  • Climate change caused by increased greenhouse gas emissions can alter the natural ecosystem, including the pollination ecosystem and agricultural ecology, which are ecological interactions between potted insects and plants. Many studies have reported that populations of wild bees, including bees and wasps (BW), which are the key pollinators, have gradually declined due to climate change, leading to adverse impacts on overall biodiversity, ultimately with agribusinesses and the life cycle of flowering plants. Therefore, we could infer that the rising temperature in Korean Peninsula (South Korea) due to global warming has led to climate change and influenced the wild bee's ecosystem. In this study, we surveyed the distributional pattern of BW (Superfamily: Apoidea, Vespoidea, and Chrysidoidea) at 51 sites from 2017 (37 sites) to 2018 (14 sites) to examine the effects of climatic factors on the nationwide distribution of BW in South Korea. Previous literature has confirmed that their distribution according to forest climate zones is significantly correlated with mean and accumulative temperatures. Based on the result, we predicted the effects of future climate changes on the BW distribution that appeared throughout South Korea and the species that appeared in specific climate zones using Shared Socioeconomic Pathways (SSPs). The distributions of wild BW predicted by the SSP scenarios 2-4.5 and 5-8.5 according to the BIOMOD species distribution model revealed that common and endemic species will shift northward from the current habitat distribution by 2050 and 2100, respectively. Our study implies that climate change and its detrimental effect on the ecosystem is ongoing as the BW distribution in South Korea can change, causing the change in the ecosystem in the Korean Peninsula. Therefore, immediate efforts to mitigate greenhouse gas emissions are warranted. We hope the findings of this study can inspire further research on the effects of climate change on pollination services and serve as the reference for making agricultural policy and BW conservation strategy