• Title/Summary/Keyword: 종방향 프리스트레스

Search Result 17, Processing Time 0.069 seconds

Field Measurement and Analysis of Post-Tensioned Prestressed Concrete Pavement Behavior under Tensioning (현장실험을 통한 포스트텐션드 프리스트레스트 콘크리트 포장의 긴장 시 거동분석)

  • Park, Hee-Beom;Kim, Seong-Min;Kim, Dong-Ho
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.247-256
    • /
    • 2009
  • This research was conducted to analyze the behavior of PTCP (Post-Tensioned prestressed Concrete Pavement) under tensioning by performing field tests when the experimental PTCP slab was being constructed. The displacements in the slab under the environmental loading and tensioning were measured using temperature measurement sensors and displacement transducers. Tensioning was performed three times and appropriateness of tensioning could be determined by investigating the relationship between temperature and displacement, behavior of transverse crack, and daily change in displacement. The results of this study showed that under the first tensioning at very early age, large displacements were observed only near the joints because of the friction between slab and underlying layer and concrete inelasticity. Under consecutive tensioning, displacements were clearly observed all over the slab, but still affected by the friction. In addition, appropriate tensioning ensured the one-slab behavior of the PTCP slab even though cracks existed.

  • PDF

Experimental Analysis of Prestressed Approach Slab Behavior (프리스트레스가 도입된 접속슬래브의 실험적 거동 분석)

  • Park, Hee-Beom;Eum, In-Sub;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-164
    • /
    • 2010
  • This research was conducted to analyze the behavior of Single-PTAS (Single Post-Tensioned Approach Slab) under tensioning and environmental loads by performing field tests when the demonstration Single-PTAS was being constructed. The temperature measurement sensors were installed at different depths, and the displacements in the approach slab under environmental loads and tensioning were measured using displacement transducers. As an experimental result, an abrupt change in the longitudinal displacement due to tensioning was not observed. The daily temperature change in the approach slab was negligible where the depth is over about 35cm. The temperature gradient in the approach slab adjacent to bridge was smaller than that adjacent to pavement. The patterns and magnitudes of vertical displacements were directly related to the temperature gradient at the measuring location. The behavior of Single-PTAS was very similar to that of concrete pavement. Therefore, a new design methodology for approach slabs is needed to include the pavement concept and to overcome drawback of current design procedures based on the simple beam concept.

Effect of Applied Tensile Stress of Bonded PSC Tendon on Longitudinal Vibration Mechanism (부착식 PSC 텐던의 도입 긴장응력이 종진동 메카니즘에 미치는 영향)

  • Kim, Byeong-Hwa;Kim, Soo-Jin;Yeo, Keum-Soo;Cho, Seung-Je
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.392-395
    • /
    • 2011
  • 본 논문은 부착식 PSC 텐던에 도입된 긴장응력이 종진동 메카니즘에 미치는 영향을 소개한다. 텐던의 종방향 변형과 비틀림 변형은 상호 연동하여 거동하고, 텐던에 도입된 긴장응력은 축강성과 비틀림 강성에 영향을 미친다. 따라서 텐던의 탄성파 속도는 도입된 긴장응력의 크기에 따라서 변한다. 실험적 검증을 위하여 도입 긴장응력이 다른 6개의 부착식 PSC 시험체에 대한 종진동 실험이 수행되었다. 실험결과로부터 도입 응력과 탄성파 속도와의 역학적 관계를 확인하였으며, 기존 문헌의 실험결과와 비교하였다.

  • PDF

Evaluation of Proper Level of the Longitudinal Prestress for the Precast Deck System of Railway Bridges (철도교용 프리캐스트 바닥판의 적정한 종방향 프리스트레스 수준의 산정)

  • Jang Sung-Wook;Youn Seok-Goo;Jeon Se-Jin;Kim Young-Jin;Hyung Tai-Kyung
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.223-228
    • /
    • 2005
  • Precast concrete deck has many advantages comparing with the in-situ concrete deck, and has been successfully applied to replacement of the deteriorated decks and to the newly constructed highway bridges in domestic region. In order to apply the precast decks into the railway bridges, however, differences of the load characteristics between the highway and the railway should be properly taken into account including the train load, longitudinal force of the continuous welded rail. acceleration or braking force, temperature change and shrinkage. Proper level of the longitudinal prestress of the tendons that can ensure integrity of the transverse joints in the deck system is of a primary importance. To this aim, the longitudinal tensile stresses induced by the design loads are derived using three-dimensional finite element analyses, design codes and theoretical equations for the frequently adopted PSC composite girder railway bridge. The estimated proper prestress level to counteract those tensile stresses is over 2.4 MPa, which is similar to the case of the highway bridges.

  • PDF

Design Methodology of Longitudinal Post Tensioning for Post-Tensioned Concrete Pavement (포스트 텐션드 콘크리트 포장의 종방향 긴장 설계 방안)

  • Yun, Dong-Ju;Kim, Seong-Min;Bae, Jong-Oh
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.203-215
    • /
    • 2009
  • This study was conducted to develop the design methodology of longitudinal post tensioning for the post-tensioned concrete pavement (PTCP). The longitudinal stress distribution in the PTCP slab was analyzed when post tensioning was applied. Then, the tensile stress distribution in the PTCP slab due to the environmental and vehicle loads needed for the design was investigated. In addition, prestress losses were calculated considering the losses due to the frictional resistance between the slab and underlying layer and due to various reasons related to tensioning. The tensile stresses used for the design were obtained by adding the stresses from the critical conditions under both the environmental and vehicle loads. The prestress losses were obtained by considering actual field conditions. The effective post tensioning amount was determined by considering the design loads including environmental and vehicle loads and various losses, and the effect of the allowable tensile stress on the post tensioning amount was investigated. The initial stage of the design of the longitudinal post tensioning is to obtain the stresses under the design loads and the required prestress determined by subtracting the allowable tensile stress from the design stress. Then, the optimal tendon spacing and the tensioning amount can be obtained by comparing with the effective tensioning amount including various stress losses.

  • PDF

Longitudinal Vibration Mechanism of Grouted PSC Tendon (부착식 PSC 텐던의 종진동 메카니즘)

  • Kim, Byeong Hwa;Jang, Jung Bum;Lee, Hong Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.261-267
    • /
    • 2011
  • This study reveals the longitudinal vibration mechanism of tendon embedded in a prestressed concrete. The extensional and torsional displacements of the strand are coupled, and the applied prestress level of tendon affects not only axial rigidity but also torsional rigidity. Measuring the elastic wave velocity of tendon, the applied prestress level of tendon could be evaluated. This is because the elastic wave velocity is a function of extensional and torsional rigidity. Using the experimental results for the six prsteressed concrete beams with different prestress levels, the longitudinal vibration mechanism and the effect of prestress level have been examined. To estimate the system ridigities of tendon, a system identification algorithm has been newly developed. The estimated system rigidities have been compared with the available results of related previous study.

Experimental Analysis of Weigh-in-Motion Sensor Installed Post-Tensioned Concrete Pavement Behavior (고속축중계가 설치된 포스트텐션 콘크리트 포장의 실험적 거동 분석)

  • Park, Hee-Beom;Bae, Jong-Oh;Kim, Seong-Min;An, Zu-Og
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.139-146
    • /
    • 2010
  • This research was conducted to analyze the behavior of the post-tensioned concrete pavement (PTCP) system in which weigh-in-motion (WIM) sensors were installed. One lane of PTCP was constructed after removing the existing asphalt pavement. The frictional resistance between the slab and the underlying layer should be small enough for the PTCP slab to properly have prestresses by tensioning. By performing an experimental construction of PTCP, the friction effects and the longitudinal displacements of PTCP under environmental loads were investigated. Based on the knowledge obtained from the experiments, the actual PTCP sections including WIM sensors were constructed and the curling behavior of the system was investigated. As a result, the behavior of the PTCP system was not affected by the existence of WIM sensors, and the appropriate PTCP system when installing WIM sensors in it could be developed.