• Title/Summary/Keyword: 종료시한 만족도

Search Result 23, Processing Time 0.019 seconds

Design and Implementation of a Query Processor for Real-Time Main Memory Database Systems (실시간 주기억장치 데이타베이스 시스템을 위한 질의 처리기의 설계 및 구현)

  • Kim, Gyoung-Bae;Bae, Hae-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.2
    • /
    • pp.113-119
    • /
    • 2000
  • In this paper, we design and implement a query processor of real-time main memory database systems, which reflect the characteristics of main memory database systems and satisfy timing constraints. The proposed query processor manages real-time data that has timing constraint by exploiting meta database. It supports CLI in order to make application programs. It also supports extended CLI and stored CLI. The former can be expressed the Information on real-time transaction. The latter is designed to support frequently processed transaction. The proposed query processor is implemented as query processor of real-time database management systems. We Present performance evaluation results that illustrate ratio of transaction, which satisfy deadline are increased by the query processing ability of system and the efficient management of real-time data.

  • PDF

A Study for Time-Driven Scheduling for Concurrency Control and Atomic Commitment of Distributed Real-Time Transaction Processing Systems (분산 실시간 트랜잭션 처리 시스템의 동시 실행 제어와 원자적 종료를 위한 시간 구동형 스케쥴징 기법 연구)

  • Kim, Jin-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1418-1432
    • /
    • 1996
  • In addition t improved availability, replication of data can enhance performance of distributed real-time transaction processing system by allowing transactions initiated at multiple node to be processed concurrently. To satisfy both the consistency and real-time constraints, it is necessary to integrate concurrency control and atomic commitment protocols with time-driven scheduling methods. blocking caused by existing concurrency control protocols is incompatible with time-driven scheduling because they cannot schedule transactions to meet given deadlines. To maintain consistency of replicated data and to provide a high degree of schedulability and predictability , the proposed time-driven scheduling methods integrate optimistic concurrency control protocols that minimize the duration of blocking and produce the serialization by reflecting the priority transactions. The atomicity of transactions is maintained to ensure successful commitment in distributed environment. Specific time-driven scheduling techniqueare discussed, together with an analysis of the performance of this scheduling.

  • PDF

A Freezing Method for Concurrence Control in Secure Real-Time Database Systems (실시간 보안 데이타베이스 시스템에서 병행수행 제어를 위한 얼림 기법)

  • Park, Chan-Jung;Han, Hee-Jun;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.29 no.3
    • /
    • pp.230-245
    • /
    • 2002
  • Database systems for real-time applications must satisfy timing constraints associated with transactions. Typically, a timing constraint is expressed in the form of a deadline and is represented as a priority to be used by schedulers. Recently, security has become another important issue in many real-time applications. In many systems, sensitive information is shared by multiple users with different levees of security clearance. As more advanced database systems are being used in applications that need to support timeliness while managing sensitive information, there is an urgent need to develop concurrency control protocols in transaction management that satisfy both timing and security requirements. In this paper, we propose two concurrence control protocols that ensure both security and real-time requirements. The proposed protocols are primarily based on multiversion locking. However, in order to satisfy timing constraint and security requirements, a new method, called the FREEZE, is proposed. In addition, we show that our protocols work correctly and they provide a higher degree of concurrency than existing multiversion protocols. We Present several examples to illustrate the behavior of our protocols, along with performance comparisons with other protocols. The simulation results show that the proposed protocols can achieve significant performance improvement.