• Title/Summary/Keyword: 존재 형태

Search Result 4,385, Processing Time 0.033 seconds

Testicular Development and Serum Levels of Gonadal Steroids Hormone during the Annual Reproductive Cycle of the Male Koran Dark Sleeper, Odontobutis platycephala (Iwata et Jeon) (동사리, Odontobutis platycephala (Iwata et jeon) 수컷의 생식주기에 따른 정소 발달과 혈중 생식소 스테로이드의 변화)

  • 이원교;양석우
    • Journal of Aquaculture
    • /
    • v.11 no.4
    • /
    • pp.475-485
    • /
    • 1998
  • To clarify annual reproductive cycle of Koran dark sleeper, odontobutis platycephala, we examined the seasonal changes of gonadosomatic index(GSI), testicular development stages and sex steroid hormones in blood from December 1995 to November 1997. Testis was podlike shape from July to October, and tadpole-like shape from November because of its expanded posterior part. GSI was 0.14~0.18 from July to September and increased to $0.43{\pm}0.04$ in October and then was not changed significantly until February. GSI was reincreased to $0.52{\pm}0.09$ from March and then was kept at similer levels until May, but fell down to $0.28{\pm}0.05$ in June. As results of histological observation, testis was divided into 3 parts(anterior, boundary, posterior) in the development progress of germ cells. In July, the testis was composed of only spermatogonia without seminiferous tubules in most fishes. In the anterior part of testis, the ferquency of spermatogenesis stage seminiferous tubules appearing in August was more than 80% from September to December. decreased gradually from January to March and drastically in April, and then disappeared in June. The frequency of spermiogenesis stage seminiferous tubules appearing in December, increased gradually from January to March and drastically to 80% in April, and reached to 90% the highest levels of the year in June. Post-spawning stage seminiferous tubules did not appear throughout the year. The frequency of spermatogonia was 100% and 65% in July and August, and less than 20% in the rest period of the year. In the boundary part, the frequency of spermatogenesis stage seminiferous tubules appearing in August increased from September and reached to 82% in November, decreased from December, adn disappeared in March. The frequency of spermiogenesis stage seminiferous tubules appearing in November was less than 18% until February, and increased to 29%~57% from March to June. The frequency of post-spawning stage seminiferous tubules appeared 12%~25% only from March to June. The frequency of spermatogonia was 100% in July, decreased to 85% in August and 10% in November, and increased gradually from December to 50% in April, and decreased again from May to June. In the posterior part, seminiferous tubules with some seminiferous tubules increased drastically 80%~85% in August and September, decreased drastically from October to November and remained below 10% until February, and disappeared after March. The frequency of spermiogenesis stage seminiferous tubules appearing in August increased sharply from October and reached to 75% in November. decreased to 15% in December and no significant changes until March, and disappeared after April. The frequency of post-spawning stage seminiferous tubules appearing very early in November increased to 82% in December and 85%~95% until June. The frequency of spermatogonia was 100% in July, decreased drastically to 15% in August, disappeared from October to Mrch, but reappeared from April and kept at less than 10% until June. The blood level of testosterone (T) increrased gradually from August was $0.61{\pm}0.09 ng/m\ell$ in November, increrased drastically to $3.99{\pm}1.22 ng/m\ell$ in December and maintained at in similar level until March, and decreased to $0.25{\pm}0.14 ng/m{\ell} ~ 0.17{\pm}0.13ng/m{\ell}$ in April and May and no significant changes until July (P<0.05). The blood level of 17, 20 -dihydroxy-4-pregnen-3-one $ng/m{\ell}$in the rest of year without significant changes(P<0.05). Taken together these results, the germ cell development of testis progressed in the order of posterior, boundary, anterior part during annual reproductive cycle in Korean dark sleeper. The testicular cycle of Korean dark sleeper was as follows. The anterior part of testis : i.e. spermatogonial proliferation period (July), early maturation period (from August to November), mid maturation period (from December to March), late maturation period (from April to May) and functional maturation period (June) were elucidated. The boundary of testis, i.e. spermatogonial proliferation period (July), early maturation period (from August to October), mid maturation period (from November to February) and the coexistence period of late maturation, functional maturation and post-spawn (from March to June) were elucidated. The posterior of testis, i.e. spermatogonial proliferation period (July), mid maturation period (from August ot September), late maturation period (October), functional maturation period (November) and post-spawn period (from December to June) were elucidated. It was showed that the changes of sex steroid hormone in blood played a important roles in the annual reproductive cycle of Korean dark sleeper.

  • PDF

Analysis of Management Status and Optimum Production Scale of Quarrying Firms in Korea -Comparative Analysis of Aggregate and Building-Stone Quarrying Firms- (산지채석업체(山地採石業體)의 경영실태(經營實態) 및 적정규모설정(適正規模設定) -골재용(骨材用) 채석업체(採石業體)와 건축용(建築用) 채석업체(採石業體)의 비교(比較) 분석(分析)-)

  • Joung, Ha Hyeon;Cho, Eung Hyouk
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.1
    • /
    • pp.72-81
    • /
    • 1991
  • This study was carried out to provide necessary information for improving quarrying industry management in Korea. The results of the study are summarized as follows : 1. In aggregate and building-stone quarrying firms the managers over 40 years of age are 97% and 89.1%, the ones above education level of high school are 90% and 85% and the ones not more than 10 years of quarrying experience are 70% and 52%, respectively. Accordingly it can be pointed out that most of the managers of two types of firms are relatively old, have high educational background, while quarrying experiences of building-stone firm managers are longer than that of aggregate firm managers. 2. Most of the management forms are social corporation(60%) for aggregate quarry firms and private management(76%) for building-stone firms. Average areas of permitted stone-pits of aggregate and building-stone quarries are about 2.86ha and 1.66ha respectively. That is, aggregate quarrying firms are carried on a larger scale than building-stone quarrying firms. 3. The yearly average product of aggregate quarrying firms has increased steadily from $88.961m^3$ in 1985 to $144.028m^3$ in 1988, while, in case of building-stone quarry firms, it has significantly increased from $4.155m^3$ to $19.462m^3$ from 1985 to 1987, but reduced to $13.400m^3$ in 1988. Unstable production activities of building-stone quarrying firms may require continuous government support. 4. Major cost items are equipment rental, depreciation, salaries, repair, maintenance for aggregate quarrying firms, and salaries, depreciation, fuel, tax for building-stone quarrying firms. The yearly average rate of return is about 9.7% for aggregate quarry firms and 2.6% for building-stone quarry firms. It can be pointed out that aggregate quarrying firms is better managed than building-stone quarrying firms. 5. The production elasticity of salary for aggregate quarrying firms is 0.495, that of employees is 0.559, and that of capital service is 0.513. The sum of the elasticities is 1.257>1. Fur building-stone quarrying firms, that of employees is 0.492, that of variable costs is 0.192, and that of capital service is 0.498. The sum of elasticities is 1.172>1, thus denotes the increasing returns to scale for both types quarrying firms. 6. The ratio of marginal value product to opportunity cost of empolyees is 2.54, that of variable costs is 3.62, and that of capital service is 1.45, in aggregate quarrying firms. That of employees is 2.47, that is variable costs was 2.34, and that of capital service is 19.67 in building-stone quarrying firms. Therefore the critical factors for more expansion of management scale in aggregate quarrying firms are variable cost and employees, and are capital service in building-stone quarry ing firms. 7. The break-even points of stone sales are about 0.587 billion won and 0.22 billion won in aggregate and building-stone quarrying firms respectively. The optimum sales Level for profit maximization are about 2.0 billion and 0.5 billion in aggregate and building-stone quarry firms respectively.

  • PDF

La signification du dépassement de soi dans le Thomisme (토미즘의 인간적 행위에서 '자기초월'의 의미)

  • Lee, Myung-Gon
    • Journal of Korean Philosophical Society
    • /
    • v.105
    • /
    • pp.49-74
    • /
    • 2008
  • Le but de notre recherche est $d^{\prime}{\acute{e}}clairer$ la nature du $d{\acute{e}}passement$ de soi aux actes humaines dnas le Thomisme. Dans le Thomisme la nature humaine qui a la raison et la $volont{\acute{e}}$ a une $intentionnalit{\acute{e}}$ ver la fin ultime. De sorte que les actes humaines qui $corr{\grave{e}}spondent$ cette nature humaine a un $caract{\grave{e}}re$ du $d{\acute{e}}passement$ de soi visant toujours plus que le $pr{\acute{e}}sent$. Le fondement de cet acte du $d{\acute{e}}passement$ de soi est $l^{\prime}{\hat{a}}me$ rationelle qui est la forme substantielle de l'homme et de soi subsistante. Chez st. Thomas ce $caract{\grave{e}}re$ du $d{\acute{e}}passement$ a trois ${\acute{e}}taps$ distinctes : (1)le $d{\acute{e}}passement$ dans l'ordre du $progr{\grave{e}}s$ naturel (2)le $d{\acute{e}}passement$ de soi dans l'ordre morale (3)le $d{\acute{e}}passement$ de soi dans l'ordre de la religion. Le $d{\acute{e}}passement$ dans l'ordre du $progr{\grave{e}}s$ naturel apparaît d'abord au $caract{\grave{e}}re$ de $l^{\prime}{\hat{a}}me$ rationelle. St. Thomas $d{\acute{e}}finit$ les vertus rationelles comme $^{\prime}pl{\acute{e}}nitude$ dans le $f{\acute{e}}blesse$, parce qu'il $consid{\grave{e}}re$ la vertu rationelle comme $finalit{\acute{e}}$ des $facult{\acute{e}}s$ du sens $ext{\acute{e}}rieur$. L'homme par le sens $ext{\acute{e}}rieur$ reçoit des $esp{\grave{e}}ces$ sensibles(especies sensibilis), et $poss{\grave{e}}de$ les images. Puis cette images sensible devenant la $r{\acute{e}}alit{\acute{e}}$ spirituelle sous forme du $m{\acute{e}}moire$ et du souvenir, devient aussi la partie de son existence. Donc chez st. Thomas la vertue rationnelle n'est pas simplement un $facult{\acute{e}}$ $sp{\acute{e}}culative$, mais elle est dans l'ordre du devenir et du $pl{\acute{e}}nitude$. A cette raison st. Thomas compare la raison(ratio) comme $g{\acute{e}}n{\acute{e}}ration$(generatio) et l'intelleigence(intellectus) comme ${\hat{e}}tre$(esse). C'est-${\grave{a}}$-dire la raison $d{\acute{e}}passe$ le sensible et l'intelligence $d{\acute{e}}passe$ la raison. Le $d{\acute{e}}passement$ de soi dans l'ordre morale $li{\acute{e}}$ au $progr{\grave{e}}s$ de la conscience. Chez st. Thomas la perception de l'objet $ext{\acute{e}}rieur$ ayant pour but d'avoir conscience de soi, se perfectionne ${\grave{a}}$ ceci. D'avoir conscience de soi signifie d'avoir $l^{\prime}identit{\acute{e}}$ de soi, et de-$l{\grave{a}}$ apparaît l'acte moral en tnat qu'acte $sp{\acute{e}}cifique$ humain. La raison pour laquelle la vie morale elle-$m{\hat{e}}me$ a un $caract{\grave{e}}$ du $d{\acute{e}}passement$, c'est que l'acte humaine qui corresfonde ${\grave{a}}$ $l^{\prime}identit{\acute{e}}$ du soi est une vie qui vise toujours plus que le $pr{\acute{e}}sent$ ou $l^{\prime}id{\acute{e}}al$. Quant au problem du $d{\acute{e}}passement$ dans l'ordre de la religion, chez st. Thomas en raison de $l^{\prime}affinit{\acute{e}}$ entre Dieu et l'homme, $o{\grave{u}}$ il y a des vertues infuses(virtutes infusas), il y a une sorte du $d{\acute{e}}passement$ religieux. Car ces vertues infuses signifie la communication entre Dieu(${\hat{E}}tre$ absolu) et l'homme(${\hat{e}}tre$ fine) et cela signifie le $d{\acute{e}}passement$ de l'humain vers le divin. Cette $id{\acute{e}}e$ thomiste permet de penser que $o{\grave{u}}$ il y a un $d{\acute{e}}passement$ de soi dans la vie religuse d'une personne, il y a une intervention $r{\acute{e}}elle$ de la providence divine. Cette $pens{\acute{e}}e$ thomiste sera alors un $caract{\grave{e}}$ $r{\acute{e}}aliste$ face ${\grave{a}}$ la $pens{\acute{e}}e$ $id{\acute{e}}aliste$ qui n'admette que le $d{\acute{e}}passement$ absolu comme $d{\acute{e}}passement$ religieux.

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF

Occurrence and Chemical Composition of White Mica from Zhenzigou Pb-Zn Deposit, China (중국 Zhenzigou 연-아연 광상의 백색운모 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.83-100
    • /
    • 2022
  • The Zhenzigou Pb-Zn deposit, which is one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. White mica from this deposit are occured only in layer ore and are classified four type (Type I : weak alteration (clastic dolomitic marble), Type II : strong alteration (dolomitic clastic rock), Type III : layer ore (dolomitic clastic rock), Type IV : layer ore (clastic dolomitic marble)). Type I white mica in weak alteration zone is associated with dolomite that is formed by dolomitization of hydrothermal metasomatism. Type II white mica in strong alteration zone is associated with dolomite, ankerite, quartz and alteration of K-feldspar by hydrothermal metasomatism. Type III white mica in layer ore is associated with dolomite, ankerite, calcite, quartz and alteration of K-feldspar by hydrothermal metasomatism. And type IV white mica in layer ore is associated with dolomite, quartz and alteration of K-feldspar by hydrothermal metasomatism. The structural formulars of white micas are determined to be (K0.92-0.80Na0.01-0.00Ca0.02-0.01Ba0.00Sr0.01-0.00)0.95-0.83(Al1.72-1.57Mg0.33-0.20Fe0.01-0.00Mn0.00Ti0.02-0.00Cr0.01-0.00V0.00Sb0.02-0.00Ni0.00Co0.02-0.00)1.99-1.90(Si3.40-3.29Al0.71-0.60)4.00O10(OH2.00-1.83F0.17-0.00)2.00, (K1.03-0.84Na0.03-0.00Ca0.08-0.00Ba0.00Sr0.01-0.00)1.08-0.85(Al1.85-1.65Mg0.20-0.06Fe0.10-0.03Mn0.00Ti0.05-0.00Cr0.03-0.00V0.01-0.00Sb0.02-0.00Ni0.00Co0.03-0.00)1.99-1.93(Si3.28-2.99Al1.01-0.72)4.00O10(OH1.96-1.90F0.10-0.04)2.00, (K1.06-0.90Na0.01-0.00Ca0.01-0.00Ba0.00Sr0.02-0.01)1.10-0.93(Al1.93-1.64Mg0.19-0.00Fe0.12-0.01Mn0.00Ti0.01-0.00Cr0.01-0.00V0.00Sb0.00Ni0.00Co0.05-0.01)2.01-1.94(Si3.32-2.96Al1.04-0.68)4.00O10(OH2.00-1.91F0.09-0.00)2.00 and (K0.91-0.83Na0.02-0.01Ca0.02-0.00Ba0.01-0.00Sr0.00)0.93-0.83(Al1.84-1.67Mg0.15-0.08Fe0.07-0.02Mn0.00Ti0.04-0.00Cr0.06-0.00V0.02-0.00Sb0.02-0.01Ni0.00Co0.00)2.00-1.92(Si3.27-3.16Al0.84-0.73)4.00O10(OH1.97-1.88F0.12-0.03)2.00, respectively. It indicated that white mica of from the Zhenzigou deposit has less K, Na and Ca, and more Si than theoretical dioctahedral mica. Compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution. It means that the Fe in white mica exists as Fe2+ and Fe3+, but mainly as Fe2+. Therefore, white mica from layer ore of the Zhenzigou deposit was formed in the process of remelting and re-precipitation of pre-existed minerals by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. And compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution during hydrothermal metasomatism depending on wallrock type, alteration degree and ore/gangue mineral occurrence frequency.