• Title/Summary/Keyword: 조종성 계수

Search Result 58, Processing Time 0.025 seconds

Real-Time Estimation of Control Derivatives for Control Surface Fault Detection of UAV (실시간 조종미계수 추정에 의한 무인비행기 조종면 고장검출)

  • Lee, Hwan;Kim, Eung-Tae;Choi, Hyoung-Sik;Choi, Ji-Young;Lee, Sang-Kee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.999-1005
    • /
    • 2007
  • In case of an abnormal condition of control surface, the real-time estimation of aerodynamic derivatives are required for the reconfigurable control system to be flight for missions or return to the head office. The goal of this paper is to represent a technique of fault detection to the control surface as a base research to the fault tolerant control system for safety improvement of UAV. The real-time system identification for the fault detection to the control surface was applied with the recursive Fourier Transform and verified through the HILS and flight test. The failures of the control surface are detected by comparing the control derivatives in fault condition with the normal condition. As a result from the flight test, we have confirmed that the control derivatives of fault condition less than about 50% in the normal condition.

Theoretical Analysis of Linear Maneuvering Coefficients with Water Depth Effect (수심의 영향을 고려한 선형(線形) 조종성 계수의 이론적 해석)

  • In-Young Gong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.47-58
    • /
    • 1994
  • Theoretical calculations are carried out for the estimation of linear maneuvering coefficients of a ship moving in shallow water region. Hydrodynamic forces and moments acting on a maneuvering ship are modelled based on a slender body theory, from which integro-differential equation for the unknown inner stream velocity is derived. Numerical algorithms fur solving this equation are described in detail. By considering water depth effects in the mathematical model, variations of maneuvering coefficients with water depth are studied. Programs are developed according to this method and calculations are done for Mariner, Series 60 and Wigley hull forms. For the verification of the programs, calculated results are compared with some analytic solutions and with published experimental results, which show good agreements in spite of many assumptions included in the mathematical model. It is expected that this method can be used as a preliminary tool for the estimation of maneuverability coefficients of a ship in shallow water region at its initial design stage.

  • PDF

Control Surface Fault Detection of the DURUMI-II by Real-Time System Identification (실시간 시스템 식별에 의한 두루미-II 조종면 고장진단)

  • Lee, Hwan;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.21-28
    • /
    • 2007
  • The goal of this paper is to represent a technique of fault detection for the control surface as a base research of the fault tolerant control system for safety improvement of UAV. The real-time system identification based on the recursive Fourier Transform was implemented for the fault detection of the control surface and verified through the HILS and flight test. The failures of the control surface are detected by comparing the control derivatives in fault condition with the normal condition. As a result from the flight test, we have confirmed that the control derivatives of fault condition less than normal condition.

  • PDF

Estimation of Aircraft Stability Derivatives Using a Subsonic-supersonic Panel Method (아음속 초음속 패널법을 이용한 항공기 안정성 미계수 예측)

  • Gong, Hyo-Joon;Lee, Hyung-Ro;Kim, Beom-Soo;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.385-394
    • /
    • 2012
  • A computer program that can estimate static, dynamic stability and control derivatives using a subsonic-supersonic panel method is developed. The panel method uses subsonic-supersonic source and elementary horse shoe vortex distributions, and their strengths are determined by solving the boundary condition approximated with a thin body assumption. In addition, quasi-steady analysis on the body fixed coordinate system allows the estimation of damping coefficients of aircraft 3 axes. The code is validated by comparing the neutral point, roll and pitch damping of delta wings with published analysis results. Finally, the static, dynamic stability and control derivatives of F-18 are compared with experimental data as well as other numerical results to show the accuracy and the usefulness of the code.

Improvement of Prediction Technique of the Ship′s Manoeuvrability at Initial Design Stage (초기 설계단계에서 선박조종성능 추정에 대한 정도향상 연구)

  • Ho-Young Lee;Sang-Sung Shin;Deuk-Joon Yum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.1
    • /
    • pp.46-53
    • /
    • 1998
  • In this paper, we studied to improve Inoue's[1] and Kijima's[2] model used to predict ship's manoeuvrability at initial design state. To perform this work, we carried out PMM(Planar motion Mechanism) test and rudder open water test for 12 models of low-speed blunt-ship which have horn type rudders and bulbs in afterbody. As we adopted MMG(Mathematical Modelling Group) model, we could analyze hydrodynamic and MMG experimental coefficients. The regression analyses by principle parameters were carried out for hydrodynamic and MMG experimental coefficients. The regression analyses by principle parameters were carried out for hydrodynamic and MMG experimental coefficients and the equations by regression analysis wee used to search sensitivities and to estimate ship's manoeuvrability. We had simulated ship's manoeuvrability to check revised MMG.

  • PDF

Development of Simple Dynamic Models for Ship Manoeuvring Simulation (선박 조종 시뮬레이션을 위한 단순 기동 모델 개발)

  • Kim, Dong-Jin;Yeo, Dong-Jin;Rhee, Key-Pyo
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.17-25
    • /
    • 2010
  • It is necessary for the ship dynamic models to realize ship dynamics and to achieve the real-time analysis in the manoeuvring simulation. Generally, simple dynamic models, such as 1st-order differential equation models of turning angle, turning rate, and forward speed, are used in the manoeuvring simulation for multiple ships. Ship dynamic modeling and parameter estimation methods based on its turning test results are proposed in this paper. Parameter estimation methods for the constant speed model and the speed-changing model are mathematically developed and verified by comparing with turning test results of a real ship.

Design and Experimental Evaluation of Sliding Mode Controller Nonlinear Autonomous Underwater Vehicle (비선형 무인잠수정을 위한 슬라이딩 모우드 조종기 설계 및 실험적 고찰)

  • Sur, J.N.
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.11-18
    • /
    • 1992
  • 비선형성 및 측정할 수 없는 외란에 영향을 받은 무인잠수정의 깊이 조종을 위한 슬라이딩 모우드 조종기를 설계하였다. 먼저, 성형화 된 운동방정식을 기초로 하여 슬라이딩 표면계수를 수치행석으로 최적화 시켰으며, 이 설계된 슬라이딩 표면을 비선형 운동방정식에 적용하여, 그 특성을 고찰하었다. 마지막으로, 용이하게 설계된 슬라이딩 모우드 조종기를 비선형성과 외란을 갖는 NPS(Naval postgraduate School) 형태의 무인잠수정에 적용하여 얻어진 실험치의 동적 특성을 통해 슬라이딩 모우드의 강인성을 확인하였다.

  • PDF

A Study on the Effect of Rudder Area with Reference to Changes in Span Distance on Course Stability of a Ship (타의 스팬길이에 따른 면적 변화가 침로안정성에 미치는 영향에 관한 연구)

  • Sohn, K.H.;Lee, G.W.;Kim, H.S.;Kim, Y.S.;Ha, M.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.1-14
    • /
    • 1996
  • Especially in the case of a full form ship, the stability on course can be considered to become severest among 4 items of criteria in Interim Standards for Ship Maneuverability adopted by IMO in 1993. The purpose of this study is to find some ideas for the improvement of stability on course through changes in rudder area with reference to span distance. In this paper, we established the formula on the relation between the experimental constants relevant to rudder normal force and hydrodynamic derivatives of hull-propeller-rudder system. We carried out various kinds of captive model test relevant to rudder normal force etc., and evaluated hydrodynamic derivatives of hull-propeller-rudder system, and analyzed the stability on course with the parameter of changes in rudder area. Furthermore, we also discussed effects of changes in rudder area on maneuvering performance including stability on course, based on computer simulation. As a result, it is clarified that there is a possibility that stability on course may become bad through an increase of rudder area. The reason for the bad stability on course is that the void space between the upper edge of rudder and the lower part of stern overhang decreases. This space change exerts a great influence on straightening coefficient of incoming flow to rudder in maneuvering motion, which has close relation to stability on course.

  • PDF

A Comparison Study on the Semi-empirical Analysis Approach for the Flight Characteristics of a Light Airplane (경비행기의 비행특성 분석 및 준경험적 분석 방법 비교)

  • Lee, Jung-hoon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • In this study, for development of the MDO (Multi Disciplinary Optimization) framework, the flight dynamic characteristic parameters of the ChangGong-91, a light aircraft, were extracted by an analytical method based on various semi-empirical methods, and the flight test method was compared and evaluated. The semi-empirical analysis methods for comparative subjects were the Perkins method, McCormick method, and Smetana method. The major stability/control derivatives and dynamic factors were calculated, using each method. As the comparison criteria, the flight test derivative estimates and dynamic factors were processed, using the output error method. Additionally, the flight characteristics of the light aircraft were analyzed and evaluated according to the provisions of the Korean Airworthiness Standard (KAS) of the Ministry of Land, Infrastructure and Transport, and MIL-F-8785C for the U.S. military.

Prediction Method for Linear Maneuvering Hydrodynamic Derivatives Using Slender Body Theory Based on RANS (RANS 기반의 세장체 이론을 이용한 선형 조종 유체력 미계수 추정에 관한 연구)

  • Lee, Sungwook
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.340-345
    • /
    • 2017
  • It is important to predict the hydrodynamic maneuvering derivatives, which consist of the forces and moment acting on a hull during a maneuvering motion, when estimating the maneuverability of a ship. The estimation of the maneuverability of a ship with a change in the stern hull form is often performed at the initial design stage. In this situation, a method that can reflect the change in the hull form is necessary in the prediction of the maneuverability of the ship. In particular, the linear hydrodynamics maneuvering derivatives affect the yaw checking motion as the key factors. In the present study, static drift calculations were performed using Computational Fluid Dynamics (CFD) based on Reynolds Average Navier-Stokes (RANS) for a 40-segment hull. A prediction method for the linear hydrodynamic maneuvering derivatives was proposed using the slender body theory from the distribution of the lateral force acting on each segment of the hull. Moreover, the results of a comparison study to the model experiment for KVLCC1 performed by KRISO are presented in order to verify the accuracy of the static drift calculation. Finally, the linear hydrodynamic maneuvering derivatives obtained from both the model test and calculation are compared and presented to verity the usefulness of the method proposed in this study.