• Title/Summary/Keyword: 조정인

Search Result 13,496, Processing Time 0.042 seconds

Impact of Gender Differences in Elderly Patients with Acute Myocardial Infarction (고령의 급성 심근경색증 환자에서 성별에 따른 영향)

  • Seol, Soo Young;Jeong, Myung Ho;Lee, Seung Hun;Sohn, Seok-Joon;Cho, Jae Yeong;Kim, Min Chul;Sim, Doo Sun;Hong, Young Joon;Park, Hyung Wook;Kim, Ju Han;Ahn, Youngkeun;Cho, Jeong Gwan;Park, Jong Chun
    • The Korean Journal of Medicine
    • /
    • v.94 no.1
    • /
    • pp.96-106
    • /
    • 2019
  • Background/Aims: It is well known that gender differences are associated with clinical outcomes in patients with acute myocardial infarction (AMI). However, it is not clear whether gender differences affect the prognosis of elderly patients with AMI. Methods: We analyzed the incidence of in-hospital complications and mortality in the Korea Acute Myocardial Infarction Registry-National Institutes of Health from November 2011 to June 2015. This study included elderly patients (≥ 75 years) diagnosed with AMI. Results: A total of 2,953 patients were eligible for this study. Among them, 1,529 (51.8%) patients were female, and the mean age of the female group was older than that of the male group (80.7 ± 4.4 vs. 79.6 ± 4.0 years, respectively, p < 0.001). Elderly females utilized emergency medical services less frequently compared with elderly males (11.5 vs. 15.4%, respectively, p < 0.001). Elderly female AMI patients had a similar rate of in-hospital mortality compared with elderly males (7.1 vs. 8.4%, respectively, p = 0.196). The rate of major cardiac adverse events (MACEs) was lower in elderly females than males during a 12-month follow-up (hazard ratio [HR] 1.19, 95% confidence interval [CI] 1.00-1.41, p = 0.045). According to multivariate analysis, the male gender is an independent factor for predicting 1-year MACEs (HR 1.37, 95% CI 1.14-1.65, p < 0.001). Conclusions: No significant differences in peri-procedural complications or in-hospital mortality were observed between male and female elderly patients with AMI. However, elderly female patients had a more favorable prognosis than male patients during a 1-year clinical follow-up.

Action effect: An attentional boost of action regardless of medium and semantics (의미적 표상 및 매개체와 무관한 단순 행동의 주의력 증진 효과)

  • Dogyun Kim;Eunhee Ji;Min-Shik Kim
    • Korean Journal of Cognitive Science
    • /
    • v.34 no.3
    • /
    • pp.153-180
    • /
    • 2023
  • Previous research on the action effect had shown how simple action towards a stimulus can enhance the processing of that stimulus in subsequent visual search task (Buttaccio & Hahn, 2011; Weidler & Abrams, 2014). In four experiments, we investigated whether semantic representation of action word can induce the same attentional boost towards that stimulus and whether the type of action performed can modulate the action effect. In experiment 1, we replicated the same experimental paradigm displayed in previous studies. Participants were first shown an action word cue - "go" or "no". When the action cue was "go", participants were to press a designated key, but not to when the action cue was "no". Next, participants performed a visual search task, in which they reported the orientation of a tilted bar. The target could appear on top of the previously shown prime object (valid), or not (invalid). Reaction times (RTs) to the search task were measure for analysis and comparison, and the action effect had been replicated. In experiment 2, participants were instructed to respond with the keyboard for the action task, and to respond with the joystick for the visual search task. In experiment 3, participants were instructed not to press any key on the onset of prime, and then perform the visual search task to isolate the effect of semantic representation. Lastly, in experiment 4, participants were instructed to press separate keys for "go" and "no" on the onset of prime, and then perform the visual search task. Results indicate that semantic representation alone did not modulate the action effect, regardless of type of action and medium of action.

Spring Shoot Damage and Cold Hardiness of Grape in Different Varieties and Phenological Stages (봄철 포도 신초 저온 피해 양상과 품종별 전엽기 내한성 비교)

  • Dongyong Lee;Suhyun Ryu;Jae Hoon Jeong;Jeom Hwa Han;Jung-Gun Cho;Seul-Ki Lee;Sihyeong Jang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.359-367
    • /
    • 2023
  • Grapes are one of the most important fruit trees both domestically and globally. Recently, changes in plant phenology and frequent low temperatures due to climate change are increasing the possibility of damage to grape shoots in spring, which is a serious threat to grape production. This study was conducted to investigated the severity of shoots damage and the change of free sugar content in the plant organs by phenological stage, especially, from germination to leafing period. Furthermore, in order to compare the cold hardiness among grape varieties including 'Campbell Early', 'Kyoho' and 'Shine Muscat' widely grown in Korea, lethal temperature (LT50) and free sugar content by grape variety were analyzed. Shoot damage by low temperatures continued to increase as the phenological stage progressed gradually, from the bud burst to the fourth leafing stage. On the other hand, the free sugar content of each organ except leaves continued to decrease, showing pattern to similar to cold hardiness. This indicates a close relationship between free sugar content and cold hardiness. In terms of cold hardiness comparison among grape varieties, 'Shine Muscat' showed the highest cold resistance in the leafing stage with the lowest LT50 and the highest total free sugar content. Next was 'Kyoho' and 'Campbell Early'. There are clear differences in cold hardiness depending on the variety. However, it is not the same at all growth stage. It may change according to phenological stage and influenced by free sugar content at that time.

Estimation of Rice Heading Date of Paddy Rice from Slanted and Top-view Images Using Deep Learning Classification Model (딥 러닝 분류 모델을 이용한 직하방과 경사각 영상 기반의 벼 출수기 판별)

  • Hyeok-jin Bak;Wan-Gyu Sang;Sungyul Chang;Dongwon Kwon;Woo-jin Im;Ji-hyeon Lee;Nam-jin Chung;Jung-Il Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.337-345
    • /
    • 2023
  • Estimating the rice heading date is one of the most crucial agricultural tasks related to productivity. However, due to abnormal climates around the world, it is becoming increasingly challenging to estimate the rice heading date. Therefore, a more objective classification method for estimating the rice heading date is needed than the existing methods. This study, we aimed to classify the rice heading stage from various images using a CNN classification model. We collected top-view images taken from a drone and a phenotyping tower, as well as slanted-view images captured with a RGB camera. The collected images underwent preprocessing to prepare them as input data for the CNN model. The CNN architectures employed were ResNet50, InceptionV3, and VGG19, which are commonly used in image classification models. The accuracy of the models all showed an accuracy of 0.98 or higher regardless of each architecture and type of image. We also used Grad-CAM to visually check which features of the image the model looked at and classified. Then verified our model accurately measure the rice heading date in paddy fields. The rice heading date was estimated to be approximately one day apart on average in the four paddy fields. This method suggests that the water head can be estimated automatically and quantitatively when estimating the rice heading date from various paddy field monitoring images.

Estimation of Rice Canopy Height Using Terrestrial Laser Scanner (레이저 스캐너를 이용한 벼 군락 초장 추정)

  • Dongwon Kwon;Wan-Gyu Sang;Sungyul Chang;Woo-jin Im;Hyeok-jin Bak;Ji-hyeon Lee;Jung-Il Cho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.387-397
    • /
    • 2023
  • Plant height is a growth parameter that provides visible insights into the plant's growth status and has a high correlation with yield, so it is widely used in crop breeding and cultivation research. Investigation of the growth characteristics of crops such as plant height has generally been conducted directly by humans using a ruler, but with the recent development of sensing and image analysis technology, research is being attempted to digitally convert growth measurement technology to efficiently investigate crop growth. In this study, the canopy height of rice grown at various nitrogen fertilization levels was measured using a laser scanner capable of precise measurement over a wide range, and a comparative analysis was performed with the actual plant height. As a result of comparing the point cloud data collected with a laser scanner and the actual plant height, it was confirmed that the estimated plant height measured based on the average height of the top 1% points showed the highest correlation with the actual plant height (R2 = 0.93, RMSE = 2.73). Based on this, a linear regression equation was derived and used to convert the canopy height measured with a laser scanner to the actual plant height. The rice growth curve drawn by combining the actual and estimated plant height collected by various nitrogen fertilization conditions and growth period shows that the laser scanner-based canopy height measurement technology can be effectively utilized for assessing the plant height and growth of rice. In the future, 3D images derived from laser scanners are expected to be applicable to crop biomass estimation, plant shape analysis, etc., and can be used as a technology for digital conversion of conventional crop growth assessment methods.

Satellite-Based Cabbage and Radish Yield Prediction Using Deep Learning in Kangwon-do (딥러닝을 활용한 위성영상 기반의 강원도 지역의 배추와 무 수확량 예측)

  • Hyebin Park;Yejin Lee;Seonyoung Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.1031-1042
    • /
    • 2023
  • In this study, a deep learning model was developed to predict the yield of cabbage and radish, one of the five major supply and demand management vegetables, using satellite images of Landsat 8. To predict the yield of cabbage and radish in Gangwon-do from 2015 to 2020, satellite images from June to September, the growing period of cabbage and radish, were used. Normalized difference vegetation index, enhanced vegetation index, lead area index, and land surface temperature were employed in this study as input data for the yield model. Crop yields can be effectively predicted using satellite images because satellites collect continuous spatiotemporal data on the global environment. Based on the model developed previous study, a model designed for input data was proposed in this study. Using time series satellite images, convolutional neural network, a deep learning model, was used to predict crop yield. Landsat 8 provides images every 16 days, but it is difficult to acquire images especially in summer due to the influence of weather such as clouds. As a result, yield prediction was conducted by splitting June to July into one part and August to September into two. Yield prediction was performed using a machine learning approach and reference models , and modeling performance was compared. The model's performance and early predictability were assessed using year-by-year cross-validation and early prediction. The findings of this study could be applied as basic studies to predict the yield of field crops in Korea.

Estimation of Chlorophyll Contents in Pear Tree Using Unmanned AerialVehicle-Based-Hyperspectral Imagery (무인기 기반 초분광영상을 이용한 배나무 엽록소 함량 추정)

  • Ye Seong Kang;Ki Su Park;Eun Li Kim;Jong Chan Jeong;Chan Seok Ryu;Jung Gun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.669-681
    • /
    • 2023
  • Studies have tried to apply remote sensing technology, a non-destructive survey method, instead of the existing destructive survey, which requires relatively large labor input and a long time to estimate chlorophyll content, which is an important indicator for evaluating the growth of fruit trees. This study was conducted to non-destructively evaluate the chlorophyll content of pear tree leaves using unmanned aerial vehicle-based hyperspectral imagery for two years(2021, 2022). The reflectance of the single bands of the pear tree canopy extracted through image processing was band rationed to minimize unstable radiation effects depending on time changes. The estimation (calibration and validation) models were developed using machine learning algorithms of elastic-net, k-nearest neighbors(KNN), and support vector machine with band ratios as input variables. By comparing the performance of estimation models based on full band ratios, key band ratios that are advantageous for reducing computational costs and improving reproducibility were selected. As a result, for all machine learning models, when calibration of coefficient of determination (R2)≥0.67, root mean squared error (RMSE)≤1.22 ㎍/cm2, relative error (RE)≤17.9% and validation of R2≥0.56, RMSE≤1.41 ㎍/cm2, RE≤20.7% using full band ratios were compared, four key band ratios were selected. There was relatively no significant difference in validation performance between machine learning models. Therefore, the KNN model with the highest calibration performance was used as the standard, and its key band ratios were 710/714, 718/722, 754/758, and 758/762 nm. The performance of calibration showed R2=0.80, RMSE=0.94 ㎍/cm2, RE=13.9%, and validation showed R2=0.57, RMSE=1.40 ㎍/cm2, RE=20.5%. Although the performance results based on validation were not sufficient to estimate the chlorophyll content of pear tree leaves, it is meaningful that key band ratios were selected as a standard for future research. To improve estimation performance, it is necessary to continuously secure additional datasets and improve the estimation model by reproducing it in actual orchards. In future research, it is necessary to continuously secure additional datasets to improve estimation performance, verify the reliability of the selected key band ratios, and upgrade the estimation model to be reproducible in actual orchards.

Evaluation of the Effects of Hangover-Releasing Agent Containing Vinegar Extract in Common Buckwheat and Tartary Buckwheat on Alcohol Metabolism and Hangover Improvement (일반메밀과 쓴메밀의 식초 추출물의 알코올 대사 및 숙취개선 효능 평가)

  • Su Jeong Kim;Hwang Bae Sohn;A Hyun Park;Jong Nam Lee;Su Hyoung Park;Jung Hwan Nam;Do Yeon Kim;Dong Chil Chang;Yul Ho Kim
    • Korean Journal of Plant Resources
    • /
    • v.36 no.5
    • /
    • pp.435-445
    • /
    • 2023
  • The aim of this study was to explore the effects of vinegar extract from seed of common buckwheat (Fagopyrum esculentum Moench) and seed of tartary buckwheat (F. tataricum Gaertner) on acute ethanol-induced hangover in Sprague-Dawley rats. Vinegar extract from buckwheat is rich choline, quercetin and its glycoside, rutin known as flavonoid antioxidants. The test extract containing buckwheat was proven to alleviate hangovers through a significant reduction in the concentration of alcohol and acetaldehyde in the context of an alcohol-induced hangover model. Hepatic alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activities were significantly higher in buckwheat vinegar-treated rats than in ethanol-treated rats. Moreover, tartary buckwheat vinegar upregulated antioxidant enzyme such as superoxide dismutase and Catalase activities in liver tissues. These results suggest that buckwheat vinegar extract could alleviate ethanol-induced hangover symptoms by elevating activities related to hepatic ethanol-metabolizing enzymes against ethanol induced metabolites, and in particular, tartary buckwheat should be further developed to be a novel anti-hangover material.

Growth of Intestinal Bacteria and Intestinal Inflammation of Sprout Extract from Common Buckwheat and Tartary Buckwheat (일반메밀과 쓴메밀의 새싹 추출물의 장내 유익균 증식 및 염증조절 효능 평가)

  • Su Jeong Kim;Hwang Bae Sohn;Jong Won Kim;Sanghyun Lim;Jong Nam Lee;Su Hyoung Park;Jung Hwan Nam;Do Yeon Kim;Ye Jin Lee;Dong Chil Chang;Yul Ho Kim
    • Korean Journal of Plant Resources
    • /
    • v.36 no.5
    • /
    • pp.455-468
    • /
    • 2023
  • We aimed to assess the potential growth-promoting effects of buckwheat sprout on intestinal bacteria and their anti-inflammation effects in a cellular model of intestinal inflammation. The growth of Bifidobacterium longum ssp. infantis BT1 was enhanced with the addition of the sprout extract of tartary buckwheat. Further, in the inflammatory model cells cultured with Raw 264.7 cells were treated with buckwheat sprout including each 10 probiotics before the addition of lipopolysaccharide (LPS) to induce inflammation in Raw 264.7 cells. Buckwheat sprout in both Bifidobacterium longum ssp. infantis BT1 and Lacticaseibacillus paracasei LPC5 significantly reduced the production of NO and PGE2. The above results indicate that buckwheat sprout extract which contains with various physiologically active substances such as rutin, quercetin, and choline is effective in suppressing NO and PGE2 production, which are inflammation-related indicators. The present study suggests that buckwheat sprout could induce positive effects on the intestinal beneficial bacteria and in anti-inflammation.

A Study on Tile from the Early Period of the Three Kingdoms Period Excavated in Bonghwang-dong (김해 봉황동 유적 일대 출토 삼국시대 초기 기와 검토)

  • YUN Sunkyung;KIM Jiyeon
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.4
    • /
    • pp.40-52
    • /
    • 2023
  • The basic purpose of building material called tiles is waterproofing and damp proofing, and they were restricted to use on important buildings to symbolize authority. This is especially true during the Three Kingdoms period, although unearthed examples are rare. Most of these tiles are found in ruins in the Silla and Baekje regions. Tiles were excavated from the Buwon-dong ruins that show the oldest manufacturing technique in the Gaya region to date, and tiles from the early Three Kingdoms period were recently excavated from the Gimhae Bonghwang-dong ruins, which is presumed to be the site of the royal palace of Geumgwan Gaya. These are important materials that show the appearance of tiles from the early days of Gimhae, the ancient capital of Geumgwan Gaya. The tiles excavated from the Bonghwang-dong ruins are reddish-yellow because a small amount of sand was mixed in the tile material and baked at a low temperature. The tiles are thin, no traces of fabric were identified, but traces of clay bands were identified. Tapping tool marks and traces of an anvil used in pottery production are clearly observed on the inside and outside, indicating that the tiles were made in the same way as earthenware manufacturing methods. If this is connected to the genealogy of the potters who made Gaya earthenware, it is estimated that tiles and earthenware were produced together as in the Songrim-ri ruins in Bulo-dong, Incheon, Songgok-dong ruins in Gyeongju, and Mulcheon-ri ruins. To date, tiles excavated from the Gimhae area have been identified only in places believed to be the Geumgwan Gaya City Wall (Royal Palace) in the Gimhae Basin. Considering what has been recorded so far and the geographical scenery, the Bonghwang-dong remains are the only city wall candidate site, and this is clearly revealed through the existence of the excavated tiles, which proves this. Considering that a small number of tiles were excavated during this time, it is estimated that the role of tiles as a luxury product with a symbolic meaning was greater than that of roofing materials, and there were strict restrictions and controls on its use.