• Title/Summary/Keyword: 조절커튼

Search Result 38, Processing Time 0.024 seconds

S/B 라텍스 특성에 따른 커튼코팅용 도공액의 커튼안정성 변화

  • Kim, Chae-Hun;Lee, Hak-Rae;Choe, Eun-Hui
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2010.04a
    • /
    • pp.227-227
    • /
    • 2010
  • 기존 도공지 생산 공정에서 널리 사용되던 블레이드 도공방식을 대체할 수 있을 것으로 기대되는 커튼코팅 방식은 스크래치, 스트릭, 미스팅, 블레이드의 마모등을 발생시키지 않고 고고형분 도공이 가능하며 우수한 커버리지를 갖는 도공층을 형성시킬 수 있다는 장점을 갖고 있다. 뿐만 아니라 하나의 코팅 유닛에서 여러개의 도공층을 한번에 형성시킬 수 있어 설비투자비용 및 건조에너지, 공간활용도 절감 측면에서도 한층 유리하다. 커튼 코팅 방식에서 도공액의 유동은 도공액이 필름 형태로 사출되는 sheet forming zone, 도공액 커튼이 낙하하는 curtain flow zone, 도공액 커튼이 원지와 접촉하는 impingement zone으로 나뉜다. 커튼 코팅이 이루어지기 위해서는 sheet forming zone과 curtain flow zone에서 도공액이 얇은 막 상태를 안정적으로 유지하고 impingement zone에서는 고속으로 이송되는 도공원지에 의한 급격한 신장 조건에서 도공액 필름이 끊어지지 않고 유지되어야 한다. 이를 위해 유화제를 통해 동적 표면 장력을 낮초고 rheology modifier를 통해 점도 및 신장점도를 조절해 도공액의 커튼 안정성을 부여하는 연구가 보고된 바 있다. 도공액 제조시 바인더로 널리 사용되는 S/B 라텍스는 입도, 유리전이온도, 표면전하 등 그 특성을 달리하여 제조할 수 있으며 이러한 특성에 따라 도공액의 점도와 같은 유변특성이 변화하여 도공액의 커튼 안정성에 영향할 것으로 예상된다. 따라서 본 연구에서는 입자경과 유리전이온도, 카르복실화 정도 등을 달리한 다양한 S/B 라텍스를 사용하여 유변특성을 달리한 도공액을 제조하고 커튼 안정성의 변화를 살펴보고자 하였다.

  • PDF

Evaluation of Overall Heat Transfer Coefficient of Different Greenhouse Thermal Screens Using Building Energy Simulation (BES를 이용한 온실용 보온커튼의 관류열전달계수 산정)

  • Rasheed, Adnan;Lee, Jong Won;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.294-301
    • /
    • 2018
  • In winter, thermal screens are widely used to reduce heat loss from greenhouse to save energy. Unfortunately, not much data are available to the farmer to compare thermal screens while selecting the one that meets their specific requirements. Thus, there is a need to investigate the thermal performance of thermal screens. To address this issue, the Building Energy Simulation (BES) model of a hot box was used to calculate the overall heat transfer coefficient (U-value) of the thermal screens. To validate the model, computed and experimental U-values of single-and double-layered polyethylene (PE) material were compared. This validated model was used to predict the U-values of the selected thermal screens under defined weather conditions. We quantified the U-values of each selected material and significant changes in their U-values were noted in response to different weather conditions. Notably, the thermal properties of the tested screens were taken from the previous literature to calculate U-values using the BES model. The U-values of the thermal screens can help researchers and farmers evaluate their screens and make pre-design decisions that suit their investment capabilities.

A Study on the Development of the Structural Performance Evaluation Manual of the Skyscrapers Curtain Wall Systems for Construction Managers (초고층건축 알루미늄커튼월 구조설계검토 프로세스와 매뉴얼 개발에 관한 연구: 멀리언과 트랜섬을 중심으로)

  • Cho, Ye-Won;Lee, Min-Cheol;Ock, Jong-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.3
    • /
    • pp.92-101
    • /
    • 2009
  • The purpose of this study was to develop the curtain-wall structure design evaluation manual that can easily examine the curtain-wall structural members (Mullion and Transom) stability from the position of the construction managers. Through analyzing the structural design reports in the previous studies and interview with industry experts, the curtain-wall structural member design process was elicited. The manual, which consists of Microsoft Excel-based work sheet and its manual, was applied to a real curtain-wall design project to make sure its usability. A workshop with three curtain-wall experts and three construction managers was conducted to identify pros and cons of the manual, thereby enhancing its applicability in the future.

Comparison of Heat Insulation Characteristics of Multi-layer Thermal Screen and Development of Curtain System (다겹보온자재의 보온성 비교 및 커튼개폐장치 개발)

  • Lee, Si-Young;Kim, Hark-Joo;Chun, Hee;Yum, Sung-Hyun;Lee, Hyun-Joo
    • Journal of Bio-Environment Control
    • /
    • v.16 no.2
    • /
    • pp.89-95
    • /
    • 2007
  • This study was accomplished to compare energy saving effects of several heat insulation materials in greenhouse and to develop new automatic opening and closing equipment which is suitable to the most effective heat insulation material. To find out more effective heat insulation material, the magnitude of heat transfer occurred through aluminum screen (ALS), non-woven fabric (NWF), double-layer aluminum screen with chemical cotton sheet (DAL), and multi-layer fabric screen material quilted with non-woven fabric, chemical cotton, poly foam, and polypropylene (MLF) were compared relatively. The results showed that the relative magnitude of heat transfer occurred through MLF was lower than DAL and ALS by 23.3% and 43.0% respectively. MLF screen material was the most effective compared with other heat insulation materials. But because of thickness, there was a need of new mechanism for automatic operation in greenhouse. Accordingly, new screen system using MLF-thick but profitable for keeping warm in greenhouse-was developed. Opening & closing equipment was designed to roll MLF with pipe axis during opening process and pull MLF with string during closing process with electric motors, clutches, drums, and so on. In hot pepper cultivation and energy saving test during winter time, the early stage yield of pepper under MLF screen system was higher than NWF by 27%, and gasoline consumption of MLF screen system was lower than NWF by 46%.

Smart Home System with Indoor Lighting Control (실내 채광 조절이 가능한 스마트 홈 시스템)

  • Tae-Seon Kim;In-Ho Cho;Won-Yeong Kim;Woo-Young Choi;Su-In Choi;Do-Hyeon Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.417-418
    • /
    • 2023
  • 최근 사용되는 스마트 홈 시스템은 다양한 환경의 효율성, 편안함, 기능성을 추구한다. 하지만 기존 스마트 홈 시스템에는 실내 채광 조절이 블라인드나 커튼과 같이 사람의 관리가 필요로 한 부분이 적용된다. 본 논문은 이를 보완하고자 현재 자동차 및 항공기에 사용되는 스마트 윈도우처럼 주변 조명 조건에 따라 투명도를 조절할 수 있는 스마트 글라스나 필름 사용을 제안한다. 기존 별도의 관리가 필요한 블라인드, 커튼 등과 달리 창문 자체적으로 외부 채광을 조절하고 실내 조명과 연동하여 자동적으로 실내의 환경을 변화시킨다면 사용자의 경제성과 편의성을 증가시키는 효과를 얻을 것이다.

  • PDF

An Observation on Environmental Modification Behavior: Implications for University Apartments' Design (환경조절 행태에 대한 관찰연구: 대학 아파트 설계를 위한 시사점)

  • Kim, DukSu
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.18 no.3
    • /
    • pp.9-17
    • /
    • 2012
  • 본 연구는 미국 소재 T 대학교의 학생아파트를 대상으로 하여 창밖으로 보이는 외부 환경의 차이와 거주자의 환경조절 행태 사이의 관계를 분석하는 관찰연구로 진행되었다. 거주자와 거주환경간에 발생하는 부조화는 환경 스트레스의 한 원인이 된다. 이러한 환경 스트레스에 대한 대응 전략으로 거주자는 그들의 환경을 조정하곤 한다. 본 연구는 실내에서 식물을 키우거나 거주자의 취향에 따라 커튼을 교체하는 등의 환경조절 행태를 분석의 대상으로 한다. 창문과 현관 영역에서 발생하는 환경조절 행태의 정도를 비교 관찰하기 위해 군집형과 일자형으로 되어 있는 두 개의 배치 유형을 연구의 대상으로 선정하였다. 군집형 유형(cluster type: type A)은 상대적으로 도로에 가깝고 거실 창문의 조망이 다른 건물에 가로막혀 있으며, 일자형 유형(parallel type: type B)은 가로막고 있는 건물이 없어 자연경관을 거실 창문을 통해 조망할 수 있는 배치상의 두드러진 차이점이 있다. 관찰연구를 통해 군집형 유형에서 일자형 유형보다 더 높은 빈도로 식물 화분과 개별 커튼 등을 이용한 개인적 환경조절이 이루어진 흔적이 발견되었다. 이러한 결과는 창문을 통해 보이는 외부 경관의 특성이 거주자의 환경조절 행태에 미치는 영향의 정도를 암시하고 있다. 결론적으로 관찰연구에서 나타난 거주자의 환경조정 행태를 반영하여 디자인 고려사항을 제안하였다.

Analysis of Heating Characteristics of Multi-Layered Insulation Curtain with Silica Aerogel in Greenhouses (실리카 에어로겔을 이용한 다겹보온커튼의 온실 난방 특성 분석)

  • Jin, Byung-Ok;Kim, Hyung-Kweon;Ryou, Young-Sun;Lee, Tae-Seok;Kim, Young-Hwa;Oh, Sung-Sik;Kang, Geum-Choon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.320-325
    • /
    • 2020
  • This study aimed to analyze thermo-keeping and economic feasibility by utilizing silica aerogel, which has been attracting attention as a new material, complementing the disadvantages of the conventional multi-layered thermal screen, and producing and installing multi-layered thermal screen. The multi-layered thermal screen used in the experiment was produced in two combinations using a non-woven fabric containing silica aerogel and measured and compared the temperature and fuel consumption changes due to differences in practice with the multi-layered thermal screen being sold and used on the market. Experimental results show that the temperature and relative humidity changes due to the differences of the multi-layered thermal screens in the single-span greenhouse and the multi-span greenhouse were small but remained almost the same temperature and relative humidity. It is judged that this shows that the multi-layered thermal screen using silica aerogel is not inferior to the conventional multi-layered thermal screen. As a result of a comparative analysis of heating energy, the aerogel-based multi-layered thermal screen reduced fuel consumption by about 15% in the single-span greenhouse and about 20% in the multi-span greenhouse compared to the conventional multi-layered thermal screen. It is clear that heating energy is saved as a greenhouse size and duration increase. It was found that the silica aerogel-based multi-layered screen was more breathable and warmer than the conventional multi-layered thermal screen, but It was found that the multi-layered screen used in the multi-span greenhouse was heavier and stiff compared with the conventional multi-layered thermal screen, indicating less workability and operability. Therefore, improvements were applied to the multi-layered screens used in the single-span greenhouses. It was confirmed that the replacement of internal insulation materials reduced thickness and improved stiffness so that there could be sufficient possibility for farmers to use.

Effects of Minimizing the Heating Space on Energy Saving and Hot Pepper(Capsicum annuum L.) Growth in the Plastic Greenhouse (온실 난방공간 최소화가 에너지 절감 및 고추 생육에 미치는 영향)

  • Tae Young Kim;Young Hoe Woo;Ill Hwan Cho;Young Sam Kwon;Si Young Lee;Han Ik Jang
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.213-218
    • /
    • 2001
  • In 2000, domestic protected cultivation area was about 52,189 ha including 13,621 ha of heating greenhouses. Recently, heating cost accounts for 25 to 30% of total production cost which has been increased due to the rise of oil price, while the heating cost was about 15% in other advanced countries. To reduce the heating energy cost, the study of minimizing the heating space of greenhouse have been conducted from 1998 to 1999. The system was developed to control the heating space according to crop growth by moving horizontal curtain up and down. Installation of the heating space-control curtain in greenhouse decreased heating capacity to 264 m$^3$compared to 661.5 m$^3$in the traditional curtain, and consumpted fuel was saved about 56% point in semiforcing culture and 28% point in retarding culture of pepper. In addition, uniform distribution of air temperature and relative humidity in greenhouse environment resulted in earlier flowering and higher yields in hot pepper.

  • PDF

Effects of Covering Materials and Methods on Heat Insulation of a Plastic Greenhouse and Growth and Yield of Tomato (플라스틱하우스의 보온피복 재료 및 방법이 보온력과 토마토의 생육 및 수량에 미치는 영향)

  • Kwon Joon Kook;Lee Jae Han;Kang Nam Jun;Kang Kyung Hee;Choi Young Hah
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.251-257
    • /
    • 2004
  • This experiment was carried out to investigate the effects of different covering materials and methods on heat insulation of a plastic greenhouse, growth and yield of tomato. Night air and soil temperatures in a double-layer greenhouse with external multifold thermal cover (MTC; eight-ounce cassimere+four-fold polyform+double-fold non-woven fabric+single-fold polypropylene covering were about $1^{\circ}C$ lower than in that with internal MTC covering, but about $3^{\circ}C$ higher than in that with an EVA film screen. Tomato yield in the external MTC covering increased by $2\%\;and\;19\%$ as compared to that in the internal MTC covering and the non-covering of MTC, respectively, due to its high light transmission and insulation effect. Night air temperatures in a double-layer greenhouse with external MTC covering and with thermal screen (polyester plus aluminium) were $2.2^{\circ}C\;and\;4.5^{\circ}C$ higher than those in a double-layer greenhouse with an external MTC covering and in a double-layer greenhouse equipped an EVA film screen, respectively. Tomato yield in the treatment with external MTC covering and a thermal screen was $18\%\;and\;37\%$ greater than that in the external MTC covering and in an EVA film screen, respectively. Results indicate that tomato could be grown without heating or with minimal heating in a double-layer greenhouse covered with MTC and a thermal screen during the winter season in sourthern regions of Korea.

Study on the Physical Property of Thermal Curtains for Greenhouse (시설하우스용 보온커튼재의 물리적 특성에 관한 연구)

  • 장유섭;오권영;김승희;전종길;강금춘;정두호
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.34-42
    • /
    • 1996
  • This study was conducted to investigate the physical and optical properties of polypropylene and polyester thermal curtains, in which tensile strength, heat reservance and light transmission of two different materials were measured. The results from this study are as follows. 1. The tensile weight of different materials were ranged from 3.4kg to 13.4kg, according to the thickness of materials, but that no difference in the tensile strength was appeared between the two materials. The Elongation of polypropylene materials and the tensile weight and strength of polyester materials were greater than any other materials. 2. The light transmittances of two materials were ranged from 50.3% to 81.7 %, light transmittances in polypropylene were higher by 20-30%,than those in polyester. 3. The heat reservances of two materials were ranged from 18.2% to 41.2%, in which polypropylene showed better performance than polyester. 4. From the results of the test, the polypropylene thermal material was better in elongation, heat reservances and light transmittances, but polyester thermal material was better in tensile strength and light isolation than the other material.

  • PDF