• 제목/요약/키워드: 조우흠(趙友欽)

검색결과 4건 처리시간 0.016초

디젤 엔진소음 II (Diesel Combustion Noise Reduction based on the Numerical Simulation)

  • 강종민;안기환;조우흠;권몽주
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.909-918
    • /
    • 1997
  • Combustion oriented noise is a part of engine noise, which is mainly determined by the in-cylinder pressure profile and the structure attenuation of an engine. A numerical model for predicting the in-cylinder pressure profile and the resultant combustion noise developed by the use of a commercial code. The model is experimentally validated and updated based on the performance as well as the noise by considering the fuel injection timing, the fuel injection rate, Cetane number, intake temperature, and compression ratio. For providing a design guide of a fuel injector for a low combustion noise engine model, the optimal parameters of injection pressure profile, injection rate profile, and injection timing are determined, which gives the 5 dBA noise reduction.

  • PDF

디젤 엔진소음 (1) ; 실험적 소음 분리기법 (Experimental Noise Separation of a Diesel Engine)

  • 강종민;안기환;박해성;조우흠
    • 소음진동
    • /
    • 제7권5호
    • /
    • pp.757-764
    • /
    • 1997
  • The well-developed noise separatrion techniques are applied to the V8 RG8 Diesel engine for the engine noise reduction of a commercial vehicle. For various loads and engine RPM's, the contribution of the combustion oriented noise and the mechanically induced noise was calculated under the small variations of the injection timing. For the given Diesel engine the mechanical noise is dominant for low rpm, and the contribution of the combustion noise becomes greater as the rpm increases. The combustion noise is dominant around 2kHz range or under 50% loading condition.

  • PDF

연소실내 분사식 수소연료기관의 특성에 관한 연구 (A Study on the In-Cylinder Injection Type Hydrogen Fueled S.I. Engine)

  • 조우흠;이형승;김응서
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1702-1708
    • /
    • 1995
  • Owing to the serious problem of hydrocarbon fuel such as environmental pollution, the development of alternative fuel is very urgent. To adopt hydrogen to the internal combustion engine, a solenoid-drive type in-cylinder injection system was constructed. The injection system was installed to the single cylinder research engine, and the engine performance and the emission of citric oxide were tested upon the fuel-air equivalence ratio and the spark timing. In the case of in-cylinder injection system, hydrogen is injected after the intake valve is close, so it is possible to operate the engine without the back fire and the fall of its volumetric efficiency. In the region of the fuel-air equivalence ratio below 0.5, hydrogen and air aren't well mixed and the thermal efficiency is lowered, so the nozzle should be designed to inject hydrogen uniformly into the combustion chamber. In the region of the fuel-air equivalence ratio above 0.7,the fuel-air mixture burns very fast and the amount of citric oxide emission increases rapidly, so the spark timing should be retarded as compared with MBT.

금원수학여전진도(金元数学与全真道) (Jin-Yuan Mathematics and Quanzhen Taoism)

  • 곽서춘
    • 한국수학사학회지
    • /
    • 제29권6호
    • /
    • pp.325-333
    • /
    • 2016
  • Chinese Mathematics during the period of Jin (1115-1234) and Yuan (1271-1368) is an integral part of the high achievements of traditional mathematics during the Song (962-1279) and Yuan dynasties, which is another peak in the history of Chinese mathematics, following the footsteps of the high accomplishments during the Warring States period (475-221 BCE), the Western Han (206 BCE-24 ADE), Three Kingdoms (220-280 AD), Jin dynasty (265-420 AD), and Southern and Northern Dynasties (420-589 AD). During the Jin-Yuan period, Quanzhen Taoism was a dominating branch in Taoism. It offered certain political protection and religious comforts to many during troubled times; it also provided a relatively stable environment for intellectual development. Li Ye (1192-1279), Zhu Shijie (fl. late 13th C to early 14th C) and Zhao Youqin (fl. late 13th C to early 14th C), the major actors and contributors to the Jin-Yuan Mathematics achievements, were either heavily influenced by the philosophy of Quanzhen Taoism, or being its followers. In certain Taoist Classics, Li Ye read the records of the relations of a circle and nine right triangles which has been known as Dongyuan jiurong 洞渊九容 of Quanzhen Taoism. These relations made significant contributions in the study of the circles inscribed in a right triangle, the reasoning of which directly led to the birth of the Method of Celestial Elements (Tianyuan shu 天元术), which further developed into the Method of Two Elements (Eryuan shu ⼆元术), the Method of Three Elements (Sanyuan shu 三元术) and the Method of Four Elements (Siyuan shu 四元术).