• Title/Summary/Keyword: 조수석에어백

검색결과 7건 처리시간 0.021초

운전석 및 조수석 에어백 단품의 유한요소 모델링과 전개 과정 해석 (Finite Element Modeling of Folded Airbag and Analysis of Deployment Process)

  • 김헌영;이상근;신윤재
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.236-246
    • /
    • 1996
  • The deployment process of fully folded airbag is analyzed. The methodology of finite element modeling is presented for flat driver side airbag and 3-dimensional passenger side airbag. 'Initial metric option' is used to model 3-dimensional passenger side airbag before deployment. The deformed shapeds and pressure waveforms inside cushion evaluated from simulation are compared to the test results. The agreements between the simulation and the experiments are satisfactory, and the results of simulation are confirmed to be applied to the design of airbag module.

  • PDF

작은 체형의 여성 승객을 고려한 조수석 에어백의 설계 개선 (Improvement of Passenger Airbag Based on the Injury Assessment of the 5th Percentile Female Dummy)

  • 권율;김권희;손창규;김형일
    • 한국자동차공학회논문집
    • /
    • 제20권5호
    • /
    • pp.1-7
    • /
    • 2012
  • Automobile airbag deployment process has been studied with MADYMO software. Based on the FMVSS208 and USNCAP(United States New Car Assessment Program) regulations, four parameters were chosen for the design improvement with reference to the 5th percentile female passenger dummy: time to fire, vent hole size, tether length and tank test pressure of inflator. Sensitivity analyses based on orthogonal arrays show that enhanced protection of small females can be achieved with improved USNCAP rating within the boundary of FMVSS 208.

어린이 상해에 영향을 주는 조수석 에어백 설계 인자에 대한 연구 (A Study on the Passenger Airbag Design Parameters Influencing Child Injury)

  • 최원정;김권희;고훈건;김동석;손창규
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.176-181
    • /
    • 2009
  • The passenger airbag(PAB) designed for standard sized adults may induce unexpected results to children in out-of-position(OOP) postures. In this work, using MADYMO software, simulations of the OOP injury of children have been performed with respect to PAB design parameters and child dummy positions. The attention is focused on some details with respect to the injury of 3 and 6 year old children in two OOP postures. Among the various design parameters of the passenger airbag systems, four parameters are selected for the sensitivity analysis of the injury with the Taguchi method: bag folding pattern, vent hole size, position of the cover tear seam and the type of door tear seam. An optimal combination of the parameters is suggested.

조수석 에어백 성능 개선을 위한 형상 설계연구 (A Study on Shape Design of the Passenger Airbag for Efficiency Improvement)

  • 양성훈;임종현;김승기;채수원
    • 한국자동차공학회논문집
    • /
    • 제25권2호
    • /
    • pp.242-249
    • /
    • 2017
  • In this study, the relationship between the shape of a passenger airbag and the possibility of injury is analyzed using the Taguchi method. The optimal shape combination is proposed for a design guideline that can reduce the possibility of injury to the dummy. The airbag FE model for analysis is obtained using a CAD system that can change the shape through several independent variables. The widths of the left / right, top / bottom, and back / forth direction of the airbag shape are set as the design factors, and the effect of the combination injury probability according to the shape is analyzed. The minimum geometric combinations are obtained using the orthogonal array method. The signal to noise ratio is calculated and the optimal shape combination is obtained through sensitivity analysis. The obtained optimal shape combination is compared with the possibility of injury of the initial airbag shape to confirm improved airbag performance.

승객보호용 랩을 적용한 저위험성 조수석 에어백의 미국 연방 자동차안전 기준법규에 의거한 시험과 평가 (Test and Evaluation based on Standard Regulation of USA Federal Automotive Safety of Assistant Driver's Seat Airbag at Low Risk Deployment Passenger Airbag using Passenger Protection Wrap)

  • 김동은;김진형;강명창
    • 한국기계가공학회지
    • /
    • 제15권1호
    • /
    • pp.61-67
    • /
    • 2016
  • The airbag is a widely accepted device for occupant protection in the automotive industry. As the injuries induced by airbag deployment have become a critical issue, revisions to Federal Motor Vehicle Safety Standard (FMVSS) 208 were required to create advanced airbags that can protect occupants of varying statures. In this paper, we developed a new low-risk deployment passenger airbag by adding the Passenger Protection Wrap (PPW). The PPW reduces the cushion impact force to the occupant in order to ensure pressure dispersion. A series of tests were conducted by using FMVSS 208 test procedures to demonstrate the proposed system. It was found that the system not only satisfied the injury criteria of FMVSS 208 but was also effective for protecting passengers of all sizes (male, small female, 3-year-old, 6-year-old).

자동차 에어백의 제어부품 불량에 의한 고장현상 및 후방 추돌에 관련된 에어백 미전개에 대한 사례 연구 (Study of Examples for Air Bag Non-deployment Including Rear Collision and Failure Phenomenon by Damage of Control Parts in Vehicle Air Bag)

  • 이일권;김영규;문학훈
    • 한국가스학회지
    • /
    • 제16권6호
    • /
    • pp.102-106
    • /
    • 2012
  • 이 논문의 목적은 현장에서 발생되는 자동차 에어백 시스템의 고장사례를 모아 분석하고 연구하는 것이다. 첫 번째 사례에서는 에어백 시스템의 클럭 스프링과 에어 백 모듈 사이 배선 핀의 납땜부가 이탈되어, 배선 접촉불량에 의해 핀이 흔들릴 때마다 에어백의 작동불량 현상이 발생되는 것을 확인하였다. 두 번째 사례에서는 에어백 컴퓨터 내부의 단품 소자의 손상으로 인해 에어백 작동불량 현상이 발생된 것을 확인하였다. 세 번째 사례에서는 조수석 시트 벨트 프리텐셔너(pre-tensioner)의 내부 핀과 저항을 연결해 주는 납땜부 이탈로 인해 에어백 경고등이 점등된 것을 확인하였다. 네 번째 사례에서는 승용자동차가 화물자동차의 후면을 추돌하였을 때 때 범퍼는 상대편 차량보다 낮아 아래로 끼어들게 된다. 이 때 사고의 충격은 차량의 프레임부분에 전달되지 않기 때문에 충격센서가 설치된 프레임부분에 충격이 적게 전달되어 에어백이 작동하지 않은 것을 확인하였다.

안전띠 착용 유무에 근거한 두 단계의 충돌 가혹도 수준을 갖는 충돌 판별 알고리즘 (Crash Discrimination Algorithm with Two Crash Severity Levels Based on Seat-belt Status)

  • 박서욱;이재협
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.148-156
    • /
    • 2003
  • Many car manufacturers have frequently adopted an aggressive inflator and a lower threshold speed for airbag deployment in order to meet an injury requirement for unbolted occupant at high speed crash test. Consequently, today's occupant safety restraint system has a weakness due to an airbag induced injury at low speed crash event. This paper proposes a new crash algorithm to improve the weakness by suppressing airbag deployment at low speed crash event in case of belted condition. The proposed algorithm consists of two major blocks-crash severity algorithm and deployment logic block. The first block decides crash severity with two levels by means of velocity and crash energy calculation from acceleration signal. The second block implemented by simple AND/OR logic combines the crash severity level and seat belt status information to generate firing commands for airbag and belt pretensioner. Furthermore, it can be extended to adopt additional sensor information from passenger presence detection sensor and safing sensor. A simulation using real crash data for a 1,800cc passenger vehicle has been conducted to verify the performance of proposed algorithm.