• Title/Summary/Keyword: 조석주기

Search Result 166, Processing Time 0.024 seconds

Characteristics of Surface Sedment and Seasonal Variation of Suspended Sediment in the Masan Bay, South Coast of Korea (한국 남해 마산만의 표층퇴적물 특성과 부유퇴적물의 계절별 변화 양상)

  • Choi, Jae Ung;Woo, Han Jun;Choi, Dong Lim;Lee, Tae Hee
    • Journal of Wetlands Research
    • /
    • v.8 no.3
    • /
    • pp.67-77
    • /
    • 2006
  • Sedimentological investigations on surface and suspended sediments were performed in Masan Bay of the South Sea in order to reveal recent changes in depositional environments concerning anthropogenic influence. Surface sediments had been classified as 3 sediment facies: mud, slightly gravelly mud, and gravelly mud. In general, mud facies with more than 60% of silt is predominant and slightly gravelly mud facies occurs at the watercourse of bay's central area. The silt-dominant mud faices appears to be predominant before and after dredging. Temperature and salinity changes during one tidal cycle for each season suggest that water columns were stratified without vertical mixing regardless of the season due to weak intensity of tide from the effect of geographical features. The effect of freshwater discharge from the land seems to be insignificant. The strongest current was observed during ebb tide in spring and autumn while observed during flood tide in summer and winter. Net sediment flux (fs) and net suspended sediment transport (Qs) for suspended sediment were determined by remaining drift developed here. Net suspended sediment transport loads were seaward with $62.02{\times}10^3kgm^{-1}$, $31.84{\times}10^3kgm^{-1}$ in spring and fall, respectively, and landward with $18.23{\times}10^3kgm^{-1}$, $3.22{\times}10^3kgm^{-1}$ in summer and winter, respectively.

  • PDF

The Typhoon Surge in the Southern Coast of Korea (한국 남해안의 태풍에 의한 해일)

  • Jang, Seon-Deok;Lee, In-Cheol;Park, Cheol-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.4
    • /
    • pp.293-302
    • /
    • 1991
  • The anomalous sea level deviation or storm surge caused by the typhoon Thelma in 1987 are studied analysing tidal observation data at 7 stations in the south coast of Korean peninsula. The surges are calculated by subtracting the predicted tidal height from the observed tidal record. The tidal deviation at these stations along the coast are discussed in association with meteorological data. The sea level anomalies are studied by means of the empirical orthogonal function (EOF) analysis and the fast fourier transform (FFT) method. The results of analysis suggest that the peak value of surges are higher at the tidal stations in semi-enclosed bay and in long narrow channel than at the ones facing with the open sea. From the result of EOF analysis, the temporal and spatial fluctuations of storm surge can be described by the first EOF mode, which explains 63% of the total variances during the passage of typhoon Thelma. The deviation of storm surge in the studied areas indicates bi-modal peak during the passage of typhoon Thelma. From the results of FFT spectrum analysis, the peak of energy of autospectrum for surge, atmospheric pressure, and wind stress appeared at low frequency fluctuations band of 0.008-0.076 cph over the 4 stations. Auto-correlation function of surge showed periodicity, while that of atmospheric pressure and wind stress indicates no periodicity. The result of FFT analysis shows that the typhoon surges are related chiefly with the change of atmospheric pressure in an open bay (Cheju Harbor), but with the wind stress in a semi-enclosed bay (Yeosu Harbor).

  • PDF

Analysis of Grounding Accidents in Small Fishing Vessels and Suggestions to Reduce Them (소형어선의 좌초사고 분석과 사고 저감을 위한 제언)

  • Chong, Dae-Yul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.533-541
    • /
    • 2022
  • An analysis of marine accidents that occurred in the last five years, revealed that 77.0 % of all grounding accidents and 66.1% of all marine casualties involved small vessels, which was a very high level relatively. The Mokpo Regional Maritime Safety Tribunal (Mokpo-KMST) inquired on 72 cases of marine accidents in 2021, of which 10 cases were grounding accidents. Furthermore, eight cases of grounding accidents occurred in small fishing vessels. This study analyzed eight cases of grounding accidents on small fishing vessels that inquired in the jurisdictional area of Mokpo-KMST in 2021. I found out that this grounding occurred in clear weather with good visibility (2-4 miles) and good sea conditions with a wave height of less than 1 meter. Furthermore, I found that the main causes of grounding were drowsy navigation due to fatigue, neglect of vigilance, neglect of checking ship's position, overconfidence in GPS plotter, and lack of understanding of chart symbols and tidal differences. To reduce grounding accidents of small fishing vessels, I suggested the following measures. First, crew members who have completed the able seafarer training course on bridge watchkeeping should assist to the master. Second, alarm systems to prevent drowsiness should be installed in the bridge. Third, the regulation should be prepared for the performance standards and updating GPS plotter. Finally, the skipper of small vessels should be trained periodically to be familiar with chart symbols and basic terrestrial navigation.

The Study on the Increased Causes of Chloride ($Cl^{-}$) Concentration of the Samyang 3rd Pumping Station in Cheju Island (제주도 삼양 3수원지의 염소이온농도 상승 원인에 관한 연구)

  • 이성복;김구영;한소라;한정상
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.2
    • /
    • pp.85-94
    • /
    • 1997
  • The study is aimed to find out the causes of rapidly increasing chloride (Cl$^{-}$) concentration of the Samyang 3rd pumping station originated from coastal springs of Cheju since January 1996. The study results show that it was caused by following complicated natural and anthropogenic effects. Due to severe draught in 1996 with total rainfall of only 41.7% of annual mean of the last 36 years (1991 to 1995), it creates firstly), significant decrease of the spring discharges as well decline of the groundwater level at the site . Sea water level was in general 4.4 cm to 12.4 cm higher than the groundwater level of the site during 2 to 3.8 hours at each high tide. Those higher potential head of sea water motivates the sea water intrusion into the fresh water lens through the permeable clinkers and fracture zones situated beneath the existing grouted zone which was installed to a maximum 10 m below the ground water surface, The repeated expansion and contraction of the fresh water lens occurred by periodic changes of the sea water level at high and low tide accelerates secondly the enlargement of the transition zone between the fresh and sea water at the site. The decrease of recharge amount by rainfall shortage creates thirdly the reverse flow at the interface of sea water and groundwater. The repeated groundwater extraction of 2790${\pm}$450 $m^3$d$^{-1}$ at the time of low tide, when the fresh water lens of the sire is under the contraction stare, makes additional drawdown of the ground water level and induces the upconing of salt water into the fresh water lens. The duration of spring discharge whose Cl concentration is less than 150 mg/1 at the low tide measured at the nearby springs was about two hours with discharge rate of 532 $m^3$d$^{-1}$ and after that Cl$^{-}$ concentration is increased up to more than 1900 mg/ι.eased up to more than 1900 mg/L.

  • PDF

Simulation Approach for the Tracing the Marine Pollution Using Multi-Remote Sensing Data (다중 원격탐사 자료를 활용한 해양 오염 추적 모의 실험 방안에 대한 연구)

  • Kim, Keunyong;Kim, Euihyun;Choi, Jun Myoung;Shin, Jisun;Kim, Wonkook;Lee, Kwang-Jae;Son, Young Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.249-261
    • /
    • 2020
  • Coastal monitoring using multiple platforms/sensors is a very important tools for accurately understanding the changes in offshore marine environment and disaster with high temporal and spatial resolutions. However, integrated observation studies using multiple platforms and sensors are insufficient, and none of them have been evaluated for efficiency and limitation of convergence. In this study, we aimed to suggest an integrated observation method with multi-remote sensing platform and sensors, and to diagnose the utility and limitation. Integrated in situ surveys were conducted using Rhodamine WT fluorescent dye to simulate various marine disasters. In September 2019, the distribution and movement of RWT dye patches were detected using satellite (Kompsat-2/3/3A, Landsat-8 OLI, Sentinel-3 OLCI and GOCI), unmanned aircraft (Mavic 2 pro and Inspire 2), and manned aircraft platforms after injecting fluorescent dye into the waters of the South Sea-Yeosu Sea. The initial patch size of the RWT dye was 2,600 ㎡ and spread to 62,000 ㎡ about 138 minutes later. The RWT patches gradually moved southwestward from the point where they were first released,similar to the pattern of tidal current flowing southwest as the tides gradually decreased. Unmanned Aerial Vehicles (UAVs) image showed highest resolution in terms of spatial and time resolution, but the coverage area was the narrowest. In the case of satellite images, the coverage area was wide, but there were some limitations compared to other platforms in terms of operability due to the long cycle of revisiting. For Sentinel-3 OLCI and GOCI, the spectral resolution and signal-to-noise ratio (SNR) were the highest, but small fluorescent dye detection was limited in terms of spatial resolution. In the case of hyperspectral sensor mounted on manned aircraft, the spectral resolution was the highest, but this was also somewhat limited in terms of operability. From this simulation approach, multi-platform integrated observation was able to confirm that time,space and spectral resolution could be significantly improved. In the future, if this study results are linked to coastal numerical models, it will be possible to predict the transport and diffusion of contaminants, and it is expected that it can contribute to improving model accuracy by using them as input and verification data of the numerical models.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF