• Title/Summary/Keyword: 조사야 밖 주변선량

Search Result 11, Processing Time 0.026 seconds

A Study of Peripheral Doses for Physical Wedge and Dynamic Wedge (고정형쐐기(Physical Wedge)와 동적쐐기(Dynamic Wedge)의 조사야 주변 선량에 관한 연구)

  • Min, Je-Soon;Na, Kyung-Soo;Lee, Je-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.77-82
    • /
    • 2007
  • Purpose: This study investigates peripheral dose from physical wedge and dynamic wedge system on a multileaf collimator (MLC) equipment linear accelerator. Materials and Methods: Measurments were performed using a 2D array ion chamber and solid water phantom for a 10$\times$10 cm, source-surface distance (SSD) 90 cm, 6 and 15 MV photon beam at depths of 0.5 cm, 5 cm through dmax. Measurments of peripheral dose at 0.5 cm and 5 cm depths were performed from 1 cm to 5 cm outside of fields for the dynamic wedge and physical wedge 15$^\circ$, 45$^\circ$. Dose profiles normalized to dose at the maximum depth. Results: At 6 MV photon beam, the average peripheral dose of dynamic wedge were lower by 1.4% and 0.1%. At 15 MV photon beam, the peripheral dose of dynamic wedge were lower by maximum 1.6%. Conclusion: This study showed that dynamic wedge can reduce scattered dose of clinical organ close to the field edge and reduced treatment time. The wedge systems produce significantly different peripheral dose that should be considered in properly choosing a wedge system for clinical use.

  • PDF

A Study of Peripheral Doses for Physical Wedge and Dynamic Wedge (고정형 쐐기(Physical wedge)와 동적 쐐기(Dynamic wedge)의 조사야 주변 선량에 관한 연구)

  • Ko, Shin-Gwan;Min, Je-Soon;Na, Kyung-Soo;Lee, Je-Hee;Park, Heung-Deuk;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.407-413
    • /
    • 2008
  • Measurements of the peripheral dose were performed using a 2D array ion chamber and solid water phantom for a $10{\times}10cm$, source-surface distance (SSD) 90cm, 6 and 15MV photon beam at depths of 0.5cm, 5cm through $d_{max}$. Measurements of peripheral dose at 0.5cm and 5cm depths were performed from 1cm to 5cm outside of fields for the dynamic wedge and physical wedge $15^{\circ}$, $45^{\circ}$. For 6MV photon beam, the average peripheral dose of dynamic wedge were lower by 1.4% and 0.1% than that of physical wedge For 15MV photon beam, the peripheral dose of dynamic wedge were lower by maximum 1.6% that of physical wedge. The results showed that dynamic wedge can reduce scattered dose of clinical organ close to the field edge. The wedge systems produce different peripheral dose that should be considered in properly choosing a wedge system for clinical use.

  • PDF

A Study on the Peripheral Dose of 6MV X-ray Beam (6 MV X선의 주변선량분포)

  • Choi, Doo-Ho;Kim, Il-Han;Ha, Sung-Whan;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • v.14 no.1
    • /
    • pp.24-33
    • /
    • 1989
  • The peripheral dose, defined as the dose outside therapeutic photon fields, was estimated for 6MV X-ray linear accelerator. The measurements were performed using silicon diode detectors controlled by automatic controlled water phantom. The effects of field size, collimator position, presence or absence of wedge filter, and wedge angle were analyzed. The results were as follows 1. The peripheral dose decreases as the distance from field margin increases and it is more than 2.4% of central axis maximum dose even at 15cm distance from field margin. 2. Maximum build-up of peripheral dose is at 2-3 mm from the water surface and drops to a minimum at 1.5cm depth and then the dose increase again. 3. The peripheral dose increases as the field size. increases. At the short distance from field margin, the difference of peripheral dose between 5 $\times\;5cm^2$ and 20 $\times\;20cm^2$ field size reaches more than 2 fold. 4. The peripheral dose is higher along the upper collimator than along the lower collimator. The differences is less than 1%. 5. The presence of wedge filter increases peripheral dose. And the peripheral dose is higher along the blade side of wedge filter than along the ridge side. The difference is about 3% at 5cm distance from the field margin for 15 $\times\;15cm^2$ field size and 60$^{\circ}$ wedge filter. 6. The Peripheral dose of wedge filter increases as the wedge filter angle increases and the increasing ratio is about 2 fold in 60$^{\circ}$wedge filter compared with open field.

  • PDF

`95 원전주변 환경방사능 실태 - 환경방사선량$\cdot$환경방사능 절대안전

  • 임재호
    • Nuclear industry
    • /
    • v.16 no.2 s.156
    • /
    • pp.16-21
    • /
    • 1996
  • 지난해 우리나라 총 전력생산량 중 36$\%$를 원자력발전이 담당하였고, 그만큼 전력생산에서 차지하는 원전의 비중이 커서, 그 중요성은 어느 때보다도 부각되고 있다. 현재 우리나라의 전력수요는 매년 10$\%$ 이상 급격히 증가하고 있고, 또 자원이 없는 우리나라로서는 원자력발전을 계속 추구할 수 밖에 없다. 그러나 원전에는 원료로 우라늄을 사용하고 있기 때문에 이 우라늄의 연소과정에서 방사성물질이 발생되고 또 이 중 일부가 방사성폐기물로 외부환경에 방출된다. 원전에서는 이런 폐기물 방출을 억제할 수 있는 시설이 충분히 갖추어져 있어 방출량이 극소량이 되도록 하고 있지만, 이런 소량 방출에도 원전 주변환경이 과연 안전하게 보전되었는지 지난해 수행한 환경방사능 조사결과를 요약$\cdot$정리하면서 알아본다.

  • PDF

Usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit (안와 주변 방사선 치료 시 수정체 피폭선량 감소를 위한 2차 차폐의 유용성 평가)

  • Kwak, Yong Kuk;Hong, Sun Gi;Ha, Min Yong;Park, Jang Pil;Yoo, Sook Hyun;Cho, Woong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.87-95
    • /
    • 2015
  • Purpose : This study presents the usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit. Materials and Methods : We accomplished IMRT treatment plan similar with a real one through the computed treatment planning system after CT simulation using human phantom. For the secondary shield, we used Pb plate (thickness 3mm, diameter 25mm) and 3 mm tungsten eye-shield block. And we compared lens dose using OSLD between on TPS and on simulation. Also, we irradiated 200 MU(6 MV, SPD(Source to Phantom Distance)=100 cm, $F{\cdot}S\;5{\times}5cm$) on a 5cm acrylic phantom using the secondary shielding material of same condition, 3mm Pb and tungsten eye-shield block. And we carried out the same experiment using 8cm Pb block to limit effect of leakage & transmitted radiation out of irradiation field. We attached OSLD with a 1cm away from the field at the side of phantom and applied a 3mm bolus equivalent to the thickness of eyelid. Results : Using human phantom, the Lens dose on IMRT treatment plan is 315.9cGy and the real measurement value is 216.7cGy. And after secondary shield using 3mm Pb plate and tungsten eye-shield block, each lens dose is 234.3, 224.1 cGy. The result of a experiment using acrylic phantom, each value is 5.24, 5.42 and 5.39 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Applying O.S.B out of the field, each value is 1.79, 2.00 and 2.02 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Conclusion : When secondary shielding material is used to protect critical organ while irradiating photon, high atomic number material (like metal) that is near by critical organ can be cause of dose increase according to treatment region and beam direction because head leakage and collimator & MLC transmitted radiation are exist even if it's out of the field. The attempt of secondary shield for the decrease of exposure dose was meaningful, but untested attempt can have a reverse effect. So, a preliminary inspection through Q.A must be necessary.

  • PDF

Evaluation of usability of the shielding effect for thyroid shield for peripheral dose during whole brain radiation therapy (전뇌 방사선 치료 시 갑상선 차폐체의 주변선량 차폐효과에 대한 유용성 평가)

  • Yang, Myung Sic;Cha, Seok Yong;Park, Ju Kyeong;Lee, Seung Hun;Kim, Yang Su;Lee, Sun Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.265-272
    • /
    • 2014
  • Purpose : To reduce the radiation dose to the thyroid that is affected to scattered radiation, the shield was used. And we evaluated the shielding effect for the thyroid during whole brain radiation therapy. Materials and Methods : To measure the dose of the thyroid, 300cGy were delivered to the phantom using a linear accelerator(Clinac iX VARIAN, USA.)in the way of the 6MV X-ray in bilateral. To measure the entrance surface dose of the thyroid, five glass dosimeters were placed in the 10th slice's surface of the phantom with a 1.5 cm interval. The average values were calculated by measured values in five times each, using bismuth shield, 0.5 mmPb shield, self-made 1.0 mmPb shield and unshield. In the same location, to measure the depth dose of the thyroid, five glass dosimeters were placed in the 10th slice by 2.5 cm depth of the phantom with a 1.5 cm interval. The average values were calculated by measured values in five times each, using bismuth shield, 0.5 mmPb shield, self-made 1.0 mmPb shield and unshield. Results : Entrance surface dose of the thyroid were respectively 44.89 mGy at the unshield, 36.03 mGy at the bismuth shield, 31.03 mGy at the 0.5 mmPb shield and 23.21 mGy at a self-made 1.0 mmPb shield. In addition, the depth dose of the thyroid were respectively 36.10 mGy at the unshield, 34.52 mGy at the bismuth shield, 32.28 mGy at the 0.5 mmPb shield and 25.50 mGy at a self-made 1.0 mmPb shield. Conclusion : The thyroid was affected by the secondary scattering dose and leakage dose outside of the radiation field during whole brain radiation therapy. When using a shield in the thyroid, the depth dose of thyroid showed 11~30% reduction effect and the surface dose of thyroid showed 20~48% reduction effect. Therefore, by using the thyroid shield, it is considered to effectively protect the thyroid and can perform the treatment.

Evaluation on the radiation exposure from activated wedge filter (10MV 이상 고에너지 사용시 wedge filler의 방사화가 작업환경에 미치는 영향평가)

  • Lee HwaJung;Kim DaeYoung;Kim WonTaek;Lee KangHyeok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.69-79
    • /
    • 2004
  • In the process of photon treatments, linear accelerators with energies higher than 10 MV produce neutrons through the (${\gamma}$, n) interactions with the composite materials of the linac head md these materials further produce the induced radiations. We investigate the possible risks from these induced radiations especially in the wedge filters to the radiation workers. Wedge filters are used to modify the isodose profiles in the radiation treatment using the linear accelerator and always be handled by the radiation workers. For the background radiation, we measured the radiation in both the waiting room and the outside of the building for two hospitals, S and H. The results of S hospital were $0.11\;{\mu}Sv/hr$ and $0.10\;{\mu}Sv/hr$ for waiting room and outside respectively, and in the case of H hospital, they were $0.12\;{\mu}Sv/hr$ and $0.11\;{\mu}Sv/hr$. Using a survey meter, we measured the radiation from wedge filters inserted in 10 MV and 15 MV Siemens linear accelerators. The time series measurements were done in ${\sim}1$ minutes after exposure of 5 Gy of monitor units for the field size of $25{\times}25cm^2$. The starting value of 10 MV machine was about $3.26\;{\mu}Sv/hr$, which was three times higher than that of 10 MV. The measured radiation was from $^{28}Al$ and $^{53}Fe$ with a half life of 3.5 min. If the treatment patients are $20{\sim}50$ per day and the number of process of wedge filter change per patient is one or two, the annual dose equivalent is $0.08{\sim}0.4\;mSv$ for 10 MV, and $0.27{\sim}1.36\;mSv$ for 15 MV, which are in the range of dose equivalent limits of radiation workers.

  • PDF

Study on the Photoneutrons Produced in 15 MV Medical Linear Accelerators : Comparison of Three-Dimensional Conformal Radiotherapy and Intensity-Modulated Radiotherapy (15 MV 의료용 선형가속기에서 발생되는 광중성자의 선량 평가 - 3차원입체조형방사선치료와 세기조절방사선치료의 비교 -)

  • Yang, Oh-Nam;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.335-343
    • /
    • 2012
  • Intensity-modulated radiotherapy(IMRT) have the ability to provide better dose conformity and sparing of critical normal tissues than three-dimensional radiotherapy(3DCRT). Especially, with the benefit of health insurance in 2011, its use now increasingly in many modern radiotherapy departments. Also the use of linear accelerator with high-energy photon beams over 10 MV is increasing. As is well known, these linacs have the capacity to produce photonueutrons due to photonuclear reactions in materials with a large atomic number such as the target, flattening filters, collimators, and multi-leaf collimators(MLC). MLC-based IMRT treatments increase the monitor units and the probability of production of photoneutrons from photon-induced nuclear reactions. The purpose of this study is to quantitatively evaluate the dose of photoneutrons produced from 3DCRT and IMRT technique for Rando phantom in cervical cancer. We performed the treatment plans with 3DCRT and IMRT technique using Rando phantom for treatment of cervical cancer. An Rando phantom placed on the couch in the supine position was irradiated using 15 MV photon beams. Optically stimulated luminescence dosimeters(OSLD) were attached to 4 different locations (abdomen, chest, head and neck, eyes) and from center of field size and measured 5 times each of locations. Measured neutron dose from IMRT technique increased by 9.0, 8.6, 8.8, and 14 times than 3DCRT technique for abdomen, chest, head and neck, and eyes, respectively. When using IMRT with 15 MV photonbeams, the photoneutrons contributed a significant portion on out-of-field. It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, It is difficult to prevent high energy photon beams to produce the phtoneutrons due to physical properties, if necessary, it is need to provide the additional safe shielding on a linear accelerator and should therefore reduce the out-of-field dose.