• Title/Summary/Keyword: 조면현무암

Search Result 21, Processing Time 0.027 seconds

Petrology of the Volcanic Rocks in the Paekrogdam Crater area, Mt. Halla, Jeju Island (제주도 한라산 백록담 분화구 일대 화산암류의 암석학적 연구)

  • 고정선;윤성효;강순석
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2003
  • The Paekrogdam summit crater area, Mt. Halla, Jeju Island, Korea, composed of Paekrogdam trachyte, Paekrogdam trachybasalt, and Manseidongsan conglomerate in ascending order. Joint systems show concentric and radial patterns around the summit crate wall. The Paekrogdam crater is a summit crater lake which erupted the tuffs, scorias and lava flows of Paekrogdam trachybasalt after the emplaceent of Paekrogdam trachyte dome. SiO$_2$ contents of mafic and felsic lavas are respectively, 48.0∼53.7 wt.% and 60.7∼67.4 wt.%, reflecting bimodal volcanism. And lavas with SiO$_2$ between 53.7 wt.% and 60.7 wt.% are not found. According to TAS diagram and K$_2$O-Na$_2$O diagram, the volcanic rocks belong to the normal alkaline rock series of alkali basalt-trachybasalt-basaltic trachyandesite and trachyte association. Oxide vs. MgO diagrams represent that the mafic lavas fractionated with crystallization of olivine, clinopyroxene, magnetite and ilmenite and felsic trachyte of plagioclase and apatite. The characteristics of trace elements and REEs shows that primary magma for the trachybasalt magma would have been derived from partial melting of garnet peridotite mantle. In the discrimination diagrams, the volcanic rocks are plotted at the region of within plate basalt (WPB).

Petrologic Evolution of the Songaksan Monogenetic Volcano, Jeju Island, Korea (제주도 송악산 단성화산의 암석학적 진화)

  • 황상구;원종관;이문원;윤성효;이인우;김성규
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.13-26
    • /
    • 2001
  • Songaksan volcano, which occurs as a monogenetic volcano on the southwestern promontory of Hallasan shield volcano, is composed of tuff ring, cinder cone, lava pond and cinder conelet complex on wide basalt plateau. Except for an influx of external quartz xenocrysts in the tuff ring. Totally the volcano ranges from trachyandesite to trachybasalt in petrography and chemical compositions, which confirm the continuum between the evolved and primitive compositions widely occurring in the Jeju volcanic system. Chemical data for the volcano show quantitative compositional variation from the lower to the upper part of the volcanic sequences. The continuous compositional variations generally define a compositionally zoned magma storage. The chemical data suggest that the compositiona1 donations might have resulted from the fractional crystallization of a parental alkali magma. As result, the Songaksan volcano initially tapped the lop of the zoned magma storage and subsequently erupted successively more primitive magma.

  • PDF

Volcanological History of the Baengnokdam Summit Crater Area, Mt. Halla in Jeju Island, Korea (제주도 한라산 백록담 일대의 화산활동사)

  • Ahn, Ung San;Hong, Sei Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.221-234
    • /
    • 2017
  • The Baengnokdam, the summit crater of Mt. Halla, is one of the representative geosites of World Natural Heritage and Global Geopark in Jeju Island. The crater is marked by two distinctive volcanic lithofacies that comprise: 1) a trachytic lava dome to the west of the crater and 2) trachybasaltic lava flow units covering the gentle eastern slope of the mountain. This study focuses on understanding the formative process of this peculiar volcanic lithofacies association at the summit of Mt. Halla through field observation and optically stimulated luminescence (OSL) dating of the sediments underlying the craterforming volcanics. The trachyte dome to the west of the crater is subdivided into 3 facies units that include: 1) the trachyte breccias originating from initial dome collapse, 2) the trachyte lava-flow unit and 3) the domal main body. On the other side, the trachybasalt is subdivided into 2 facies units that include: 1) the spatter and scoria deposit from the early explosive eruption and 2) lava-flow unit from the later effusion eruption. Quartz OSL dating on the sediments underlying the trachyte breccias and the trachybasaltic lava-flow unit reveals ages of ca. 37 ka and ca. 21 ka, respectively. The results point toward that the Baengnokdam summit crater was formed by eruption of trachybasaltic magma at about 19~21 ka after the trachyte dome formed later than 37 ka.

Physical Properties of Volcanic Rocks in Jeju-Ulleung Area as Aggregates (제주도 및 울릉도에서 산출되는 화산암의 골재로서의 물성 특징)

  • Byoung-Woon You;Chul-Seoung Baek;Kye-Young Joo
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • This study evaluated the physical characteristics and quality of volcanic rocks distributed in the Jeju Island-Ulleung Island area as aggregate resources. The main rocks in the Jeju Island area include conglomerate, volcanic rock, and volcanic rock. Conglomerate is composed of yellow-red or gray heterogeneous sedimentary rock, conglomerate, and encapsulated conglomerate in a state between lavas. Volcanic rocks are classified according to their chemical composition into basalt, trachybasalt, basaltic trachytic andesite, trachytic andesite, and trachyte. By stratigraphy, from bottom to top, Seogwipo Formation, trachyte andesite, trachybasalt (I), basalt (I), trachybasalt (II), basalt (II), trachybasalt (III, IV), trachyte, trachybasalt (V, VI), basalt (III), and trachybasalt (VII, VIII). The bedrock of the Ulleung Island is composed of basalt, trachyte, trachytic basalt, and trachytic andesite, and some phonolite and tuffaceous clastic volcanic sedimentary rock. Aggregate quality evaluation factors of these rocks included soundness, resistance to abrasion, absorption rate, absolute dry density and alkali aggregate reactivity. Most volcanic rock quality results in the study area were found to satisfy aggregate quality standards, and differences in physical properties and quality were observed depending on the area. Resistance to abrasion and absolute dry density have similar distribution ranges, but Ulleung Island showed better soundness and Jeju Island showed better absorption rate. Overall, Jeju Island showed better quality as aggregate. In addition, the alkaline aggregate reactivity test results showed that harmless aggregates existed in both area, but Ulleungdo volcanic rock was found to be more advantageous than Jeju Island volcanic rock. Aggregate quality testing is typically performed simply for each gravel, but even similar rocks can vary depending on their geological origin and mineral composition. Therefore, when evaluating and analyzing aggregate resources, it will be possible to use them more efficiently if the petrological-mineralological research is performed together.

Phenocryst Composition of Mafic Volcanic Rocks in the Wangtian'e Volcano (망천아 화산 고철질 암석의 반정광물 조성 연구)

  • Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2019
  • There are beautiful scenery with columnar jointing at 15 valley of southern slope of the Wangtian'e volcano in Mt. Baekdu volcanic field. The compositions of phenocryst minerals which have porphyritic textures in mafic volcanic rocks of this area were carried out. The Wangtian'e volcano consists of Changbai basalt~trachybasalt (lower part) and Wangtian'e basaltic trachyandesite~trachyte~alkali rhyolite (upper part). This study is focused on the mafic rocks of the Changbai trachybsalt and the Wangtian'e basaltic trachyandesite. Main phenocrysts are feldspar, pyroxene and olivine. The major element compositions of the phenocrysts were analyzed using EPMA. Plagioclase phenocrysts of the Wangtian'e basaltic trachyandesite are located at the border of andesine and oligoclase ($An_{24.1{\sim}36.0}$) in the An-Ab-Or diagram, and those of the Changbai trachybasalt are labradorite ($An_{54.2{\sim}65.2}$). Pyroxene phenocrysts are augite. Olivine phenocrysts of the Changbai trachybsalt are crysolite ($Mg_{0.79-0.77}Fe_{0.21-0.23}$) and microphenocrysts in the groundmass are hyalosiderite ($Mg_{0.58-0.56}Fe_{0.42-0.44}$). Calculated crystallization temperature of olivine phenocrysts is $1196{\sim}1123^{\circ}C$, clinopyroxene is $1122{\sim}1112^{\circ}C$, phenocrysts and laths of plagioclases are $1118{\sim}1107^{\circ}C$ and $1091{\sim}1089^{\circ}C$, respectively. The temperatures suggests that the olivine phenocrysts, clinopyroxene, plagioclase phenocrysts, and plagioclase laths were crystallized in the magma chamber in sequence.

Plagioclase Composition of Feldspar Trachybasalt in Jeju Island (제주도 장석 조면현무암의 장석 성분에 대한 연구)

  • Yea, Nam Hee;Yun, Sung-Hyo;Koh, Jeong Seon
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.309-333
    • /
    • 2012
  • Basalt having lots of feldspar phenocryst occurred at the northern and southern slope of the Mt. Halla, Jejudo. Among them, the Sioreum trachybasalt in southern slope consists of abundant phenocrysts of plagioclase in aphanitic groundmass. And the number of plagioclase grains are about 20 per $10cm^2$, and based on 667 grains the sizes are 13~0.7 mm (average 4.23 mm) in length and 8.6~0.5 mm (average 2.3 mm) in width. In according to modal analyses, Sioreum basaltic rock consists mainly of plagioclase (16~28%), olivine, clinopyroxene (1.5~6%) and opaque minerals (~0.1%) of magnetite and ilmenite as phenocryst and microphenocryst and groundmass (60~82%). The compositions of plagioclase, olivine and clinopyroxene are bytownite~andesine, chrysolite~hyalosiderite, augite respectively. Plagioclase phenocrysts show different type of zoning, namely, normal, reversal, patchy, oscillatory type. The An contents of zoned plagioclase mainly increase from core to rim. Those of oscillatory type from core to rim show variations of increase following decrease or decrease following increase, being more enriched in rim or almost same to core. Under the microscope, some plagioclase phenocrysts are especially melted in core part or marginal part, or found as only the remnant remain which resulted from reaction with melt. Some clinopyroxene are also corroded in margin part or found as irregular shape resulted from melting. The characteristics of petrography and compositional variation from core to rim of plagioclase and clinopyroxene, indicate that they are disequilibrium with melt and has been undergone geological environmental changes in magma batch during crystallization including magma mixing with replenishment of more mafic and high temperature melt.

The Study on Geology and Volcanism in Jeju Island (III): Early Lava Effusion Records in Jeju Island on the Basis of $^{40}Ar/^{39}Ar$ Absolute Ages of Lava Samples (제주도의 지질과 화산활동에 관한 연구 (III): $^{40}Ar/^{39}Ar$ 절대연대자료에 근거한 제주도 형성 초기 용암 분출 기록)

  • Koh, Gi-Won;Park, Jun-Beom
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.163-176
    • /
    • 2010
  • We report twenty data for early lavas erupted during the initial period of formation of Jeju Island on the basis of review on 539 data of whole-rock greochemistry and $^{40}Ar/^{39}Ar$ age dating out of mainly core samples from 69 boreholes drilled in the lower land since 2001 and 66 outcrop sites. Out of 69 boreholes, the early lava flow units are identified from samples collected from Beophocheon (EL 235 m, 210 m deep), Donnaeko (EL 240 m, 230 deep), Donghong-S (EL 187 m, 340 m deep), 05Donghong (EL. 187.6 m, 340 m deep), Dosoon (EL 305 m, 287 m deep), Sangye (EL 230 m, 260 m deep), Mureung-1 (EL 10.2 m, 160 m deep), and Gapa (EL 17.5 m, 92 m deep), which are located in the southern and southwestern portion of Jeju Island. While, the well-known outcrops from Sanbangsan, Wolrabong, Wonmansa, and Kagsubawi are also reconfirmed. $^{40}Ar/^{39}Ar$ age dating results of these lavas range from 1 Ma to 0.7 Ma, indicating that the data can be useful to constrain on age and geochemical characteristics of early lava effusion period in the formation of Jeju Island. Especially, samples with trachybasalt in composition collected from 143 m to 137 m, and from 135 m to 123 m below ground surface at 05Donghong hole have the oldest ages, $992\pm21$ Ka and $988\pm38$ Ka, respectively. This study suggests that in Jeju Island the first lava with trachybasalt in composition may have effused around 1 Ma ago, and the effusion style and chemical compositions of lavas must have changed to the formation of lava domes with trachyte-trachyandesite-basaltic trachyandesite and the eruption of lavas with alkali basalt and trachybasalt intermittently during the period from 0.9 Ma to 0.7 Ma ago. It also indicates that the initial lava flows below the ground are intercalated with or underlain by the Seoguipo Formation except for several exposed domal structure areas such as Sanbangsan and Kagsubawi, implying that the early lava effusion may have intermittently and sporadically occurred with nearby hydrovolcanism and sedimentation.

Volcanic Activity of the Volcanoes in the Hallasan Natural Reserve, Jeju Island, Korea (한라산천연보호구역 소화산들의 화산활동 기록)

  • Hong, Sei Sun;Lee, Choon Oh;Lim, Jaesoo;Lee, Jin Young;Ahn, Ung San
    • Economic and Environmental Geology
    • /
    • v.54 no.1
    • /
    • pp.1-19
    • /
    • 2021
  • This study reports the Ar-Ar dating results for the volcanic rocks from small volcanoes(oreum) of the Hallasan Nature Reserve. According to the age of 40Ar/39Ar, the volcanic activity of the Hallasan Natural Reserve was started from about 192 ka ago. The basaltic trachyandesite and trachyte located in the Y valley near the Eorimok in the western part of the Hallasan Natural Reserve represent an age of about 191~192 ka, showing the oldest record of volcanic activity in the Hallasan Natural Reserve. In the Hallasan Natural Reserve, the small volcanoes older than 100 ka are Y Valley in Eorimok area (192±5 and 191±5 ka), Dongsu-Ak (184±19 ka), Mansedongsan (153±5 ka), Janggumok-Orum (135±6 ka), Eoseungsaengak (123±9 ka), Samgagbong (105±2 ka). And the small volcanoes younger than 100 ka are Witbangae-Oreum, Seongneol-Oreum, Muljangol, Yeongsil, Bori-Ak, Witsenueun-Oreum, Witsejokeun-Oreum, Heugbuleun-Oreum, Bangae-Oreum, Albangae-Oreum, Witsebuleun-Oreum, Baengnokdam, Nongo-Ak. According to the eruption of trachytes, the Hallasan Natural Reserve can be interpreted as having about 8 volcanic activities. Among them, 4 volcanic activities are related with the formation of trachyte dome, such as Wanggwanneung, Samgakbong, Yeongsil, and Baengnokdam, and 4 volcanic activities are related with flow or dyke of trachyte. The volcanic activity at the Hallasan Natural Reserve was started from northwest area, to in the southern area, and in the eastern area, and finally volcanic activity related to the formation of Baengnokdam.

Water Balance of a Small Catchment in the Subalpine Grassland of Mt. Halla, Southern Korea (한라산 아고산 초지대 소유역의 물수지)

  • An Jung-Gi;Kim Tae-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.404-417
    • /
    • 2006
  • In order to clarify some characteristics of hydrological cycle in the subalpine zone of Mt. Halla, water balance has been analysed using hydrological data of a first-order drainage basin around Mansedongsan and meterological data of Odeung AWS. The experimental basin extends from 1,595 m to 1,645 m in altitude and has an catchment area of 1.34 ha. It is largely underlain by trachybasalt and covered with sasa bamboo and sedges. Hydrological observations were carried out every 20 minutes from April 15 to September 19, 2004. The basin shows the total precipitation of 3,074 m that is 1.6 to 3 times of those in coastal and intermontane regions. Surface runoff amounts to 850 mm that is equivalent to 27.6% of the precipitation. By contrast, evapotranspiration only accounts for 14.2% of the precipitation, and the remnant of 1,790 m penetrates underground through a basement. The basin is located in the subalpine zone and then it has a high rainfall intensity as well as a large rainfall due to frequent orographic precipitation. But surface runoff usually dose not exceed 30% of the rainfall while Percolation demonstrates about 2 times of the runoff. Compared with granite or gneiss basins in Korea Peninsula, the experimental basin is characterized by a higher portion of percolation in water balance. And it is probably related to the highly permeable basaltic lavas in Jeju Island which are also overlain by porous volcanic soils.

A Study of Weathering Characteristic of Baeknokdam Trachyte in Jeju Island (제주도 한라산조면암의 풍화특성에 관한 연구)

  • Lee, Chang-Sup;Cho, Tae-Chin;Lee, Sang-Bae;Won, Kyung-Sik
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.235-251
    • /
    • 2007
  • Baeknokdam rock mass at the crest of Halla mountain is composed of Baeknokdam trachybasalt in the eastern region and Hallasan trachyte in the western region. On-going weathering, rockfall and collapse of Baeknokdam wall rock are closely linked to the weathering of trachyte distributed in the western region of Baeknokdam, though within the restricted area of eastern region trachybasalt blocks has been naturally formed and may be rolled down neering properties have been conducted. Based on the results of these experiments variations of mineralogical-petrographical characteristics of trachyte together with chemical and physical properties with respect to the degree of weathering have been analyzed. Weathering mechanism of Baeknokdam trachyte has been delineated by investigating the environmental cause of weathering and the peculiar features of weathered rock mass.