• Title/Summary/Keyword: 조립식 스틸

Search Result 2, Processing Time 0.018 seconds

Nonlinear Dynamic Behavior of a Cold-Formed Steel Shear Panel by Shaketable Tests (진동대 실험을 통한 조립식 스틸 전단 패널의 비선형 동적 거동)

  • Kim, Tae-Wan;Lee, Moon-Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.31-39
    • /
    • 2005
  • The purpose of this study was to investigate the nonlinear behavior of a cold-formed steel (CFS) shear panel, which was composed of built-up columns and tension-only diagonal straps for bracing, when excited by earthquake motions. For the purpose, shaketable tests of a full-scale two-story cold-formed steel (CFS) shear panel were conducted. in the shear panel, the diagonal strap is a major lateral force resisting system, which is a very ductile member, and the columns, which are gravity resisting members, are fabricated by wooing studs, which can't develop their full flexural strength because they may buckle locally. The test results showed that the straps dissipate most of energy of the shear panel in a tension-only and pinched way and the columns dissipate it relatively smaller than the straps but they still contribute to overall dissipation. As a result of this study, investigating real nonlinear behavior of a structure in earthquakes is a very important process by shaketable tests even though it is simple.

The Evaluation of Fire-Resistant Performance of the Non-bearing Steel Wall Using Fire Resistant Glass (내화유리를 적용한 강재 유리벽의 내화성능 평가)

  • Lee, Jae-Sung;Yim, Hyun-Chang;Yang, Seung-Cho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.72-81
    • /
    • 2018
  • Fireproof structures using concrete, built-up panels and dry walls are usually used in walls inside fire compartments. However, demand for glass walls is emerging due to increase in interest in visibility and external appearance. In this study on steel fire resistance walls using insulation glass, fire resistance tests and performance evaluations were conducted on 60 minute fire resistance walls and exterior walls which could be applied to interior fire compartments and 90 minute fire resistance walls which could be applied to curtain walls. According to the tests, the specimens satisfied the required fire resistance performance. The finite element analysis was conducted after the tests to evaluate the fire resistance performance of the glass walls. The analysis results showed that the preliminary evaluation of fire resistance performance would be feasible.