• Title/Summary/Keyword: 조립기둥

Search Result 57, Processing Time 0.02 seconds

Interpretation of volcanic eruption types from granulometry and component analyses of the Maljandeung tuff, Ulleung Island, Korea (울릉도 말잔등응회암의 입도와 구성원 분석으로부터 화산분화 유형 해석)

  • Hwang, Sang Koo;Lee, So-Jin;Han, Kee Hwan
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.513-527
    • /
    • 2018
  • We have carried out granulometry and component analysis on pyroclastic deposits of the Maljandeung Tuff, Ulleung Island, to interpret the eruption types and prime dynamic mechanisms. It is divided into three members in the extracaldera area, each of which comprises the lithofacies of coarse tuffs and lapillistones in the lower part, and pumice deposits in upper one. The lithofacies present quantitative evidences in the granularity and component distribution patterns. As compared to the pumice deposits, the coarse tuffs and lapillistones exhibit a relative increase in both the lithic/juvenile and the crystal/juvenile ratios, and a preferential fragmentation of the juvenile fraction. The abundance of lithics and crystals in the tuffs and lapillistones can be attributed to preferential fragmentation of the aquifer-hosting rocks due to explosive evaporation of ground water, and indirect enrichment in lithics and crystals due to removal of juvenile fines from eruptive cloud. The above data exhibit that early phreatopmagmatic phase was followed by purely magmatic fragmentation phases. The coarse tuffs and lapillistones suggest phreatoplinian eruption derived from explosive interaction of magma with ground water near the conduit, while pumice deposits indicate magmatic eruption by magmatic explosion from juvenile gas pressure. In early stage, phreatoplinian eruption occurred from explosive magma/water interaction in connecting confining water with drawdown of the magma column in the conduit; Later it shifted to plinian eruption by explosive expansion of only magmatic volatiles in intercepting water influx due to higher magmatic gas pressure than confining water pressure with rising of the magma column in the conduit.

Monotonic and Hysteresis Behavior of Semirigid CFT Column-to-Beam Connections with a Top-Seat Angle (상·하부 ㄱ형강 반강접 CFT 기둥-보 접합부의 단조 및 이력거동)

  • Lee, Sung Ju;Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.191-204
    • /
    • 2014
  • In this paper a systematic numerical analysis is performed to obtain the bending moment resisting capacity of a top and seat angle connection, which is a type of partially restrained connection, for a CFT composite frame subjected to cyclic loading. This partially restrained composite CFT connections are fabricated using high strength steel connection bar. The three-dimensional nonlinear finite element models are constructed to investigate the rotational stiffness, bending moment capacity, and failure modes. A wide scope of additional structural behaviors explain the different influences of the top and seat angle connection's parameters, such as the different thickness of connection angles and the gage distances of the high strength steel bar. The moment-rotation angle relationships obtained from the finite element analysis are compared with those from Richard's theoretical equation.

Stability Analysis of Pipe Rack Module for Underground Complex Plants Construction (복합플랜트 지하 건설을 위한 파이프랙 모듈 공법 안정 해석)

  • Kim, Sewon;Lee, Sangjun;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.113-124
    • /
    • 2021
  • Underground environmental infrastructure and energy production facilities, which are recognized as avoidable facilities such as landfills, are emerging as an important social issue due to urbanization and economic growth. In order to safely construct a large-scale plant facility in the underground space, it is necessary to increase the utilization of the limited space layout and minimize unnecessary columns. In this study, the plant modularization method(Pipe Rack Module) was reviewed to solve the problems of work constraints, assembly and demolition, process system interconnection, and maintenance that occur when plant facilities are underground. In addition, plant module analysis was performed by applying various load conditions (earthquake load, device load, earth pressure load, etc.) to improve spatial layout usability and secure structure stability. Based on the analysis results under various boundary condition, the implications regarding the minimum installation interval and module arrangement (draft) of basic modules required for the construction of an underground combined plant were derived.

Local Buckling Behavior of Stub H-shaped Columns Fabricated with HSA800 High Performance Steels under Concentric Axial Loading (중심압축력을 받는 건축구조용 고성능강(HSA800) 용접H형 단주의 국부좌굴거동)

  • Lee, Kangmin;Lee, Myung Jae;Oh, Young Suk;Kim, Tae Soo;Kim, Do Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.289-297
    • /
    • 2013
  • In this study, the local buckling behavior of steel built-up columns, fabricated with grade 800MPa high performance (HSA800), was investigated to verify the suitability of width-to-thickness ratio limits adopted by the current design code. For this purpose, an experimental program was designed and performed for HSA800 steel column specimens with various width-to-thickness ratios. Then the experimental results were compared and verified with finite element analysis results. The parametric analytical studies with various width-to-thickness ratios were also performed to investigate the missing data from the limited experimental studies. From the experimental and analytical studies, It was found that the finite analysis models could reasonably estimate the test results within the 5.3% average differences. The local buckling behaviors of HSA800 steel columns were found to be largely depend on the values of initial imperfection introduced into finite element analyses.

The Improvement Direction of Piloti Space for Neighborhood Regeneration of Deteriorated Low-Rise Residential Block (노후 저층주거지 근린재생을 위한 필로티 공간 개선 방향)

  • Yoo, Hae-Yeon;Song, Jun-Yeop;Yang, Ji-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.761-770
    • /
    • 2017
  • The objective of this study is to propose a community facility design for the revitalization of the piloti spaces of deteriorated low-rise residential blocks. For this study, the precedent research and institutional limitations are examined. In addition, this study selected and analyzed a deteriorated low-rise residential block utilizing pilotis. Generally, in this type of residence, 8 to 10 generations live together in multi-family houses and row houses, so it is a type of housing that lacks both public space and parking places. Therefore, we attempted to improve the situation of the communities by making use of the space between the pillars and walls without infringing on the parking places. In addition, we took into consideration the design and arrangement of the piloti by evaluating the inconveniences and needs of the residents through interviews. Specifically, various modules were planned and used to transform the spaces between the pillars of the pillar type piloti structure. This study examined the possibilities offered by various materials and modules, and studied the diverse possibilities that can be offered by changing the modules.

A Study on the Behavior & Buckling Characteristics of Single-Layer Latticed Domes in the Erection Process (단층 래티스 돔의 Erection 중 거동 및 좌굴 특성)

  • Jung, Hwan-Mok;Kim, Cheol-Hwan;Hwang, Dong-Gyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.3
    • /
    • pp.45-51
    • /
    • 2008
  • A single layer-latticed dome is advantageous for large span structures because it is very stiff despite the light weight of the structure itself. However, this structure becomes easily unstable during erection due to its large size. The Block method is popular with the large span structures. A partial block of the dome is fabricated on the ground and lifted by crane to a designated location of structures. The lifting point selection is very important to create a stable erection and to avoid buckling of members during the erection. The purpose of this study is to analyze the structural behaviors and buckling characteristics according to the lifting point of single-layer latticed domes with triangle network in order to take materials about the safe and economic erection. The conclusions are obtained as follow. 1) The buckling strength of the block part varies with the location of lifting points when it is erected. In case, the height of the dome is lower, the effort of buckling strength of the structure is higher. 2) In buckling strength, the effect of the lifting rope length is smaller than it of the lifting points change.

  • PDF

Numerical Analysis of Hinge Joints in Modular Structures Based on the Finite Element Analysis of Joints (접합부 유한요소해석을 바탕으로 한 모듈러 구조물의 힌지접합부 수치해석적 연구)

  • Kim, Moon-Chan;Hong, Gi-Suop
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • This paper introduces research on the hinge joint of modular structure joints using finite element analysis. The modular structure has a characteristic in that it is difficult to expect the integrity of columns and beams between unit modules because the construction is carried out such that the modules are stacked. However, the current modular design ignores these structural characteristics, considers the moment transmission for the lateral force, and analyzes it in the same manner as the existing steel structure. Moreover, to fasten the moment bonding, bolts are fastened outside and inside the module, resulting in an unreasonable situation in which the finish is added after assembly. To consider the characteristics that are difficult to expect, such as unity, a modular structure system using hinge joints was proposed. This paper proposed and reviewed the basic theory of joints by devising a modified scissors model that is modified from the scissors model used in other research to verify the transmission of load when changing from the existing moment junction to a hinge junction. Based on the basics, the results were verified by comparing them with Midas Gen, a structural analysis program. Additionally, the member strength and usability were reviewed by changing the modular structure designed as a moment joint to a hinge joint.