• Title/Summary/Keyword: 조건부 적대적 생성 신경망

Search Result 7, Processing Time 0.022 seconds

Semantic Object Segmentation Using Conditional Generative Adversarial Network with Residual Connections (잔차 연결의 조건부 생성적 적대 신경망을 사용한 시맨틱 객체 분할)

  • Ibrahem, Hatem;Salem, Ahmed;Yagoub, Bilel;Kang, Hyun Su;Suh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1919-1925
    • /
    • 2022
  • In this paper, we propose an image-to-image translation approach based on the conditional generative adversarial network for semantic segmentation. Semantic segmentation is the task of clustering parts of an image together which belong to the same object class. Unlike the traditional pixel-wise classification approach, the proposed method parses an input RGB image to its corresponding semantic segmentation mask using a pixel regression approach. The proposed method is based on the Pix2Pix image synthesis method. We employ residual connections-based convolutional neural network architectures for both the generator and discriminator architectures, as the residual connections speed up the training process and generate more accurate results. The proposed method has been trained and tested on the NYU-depthV2 dataset and could achieve a good mIOU value (49.5%). We also compare the proposed approach to the current methods in semantic segmentation showing that the proposed method outperforms most of those methods.

A Study on the implementation of the drape generation model using textile drape image (섬유 드레이프 이미지를 활용한 드레이프 생성 모델 구현에 관한 연구)

  • Son, Jae Ik;Kim, Dong Hyun;Choi, Yun Sung
    • Smart Media Journal
    • /
    • v.10 no.4
    • /
    • pp.28-34
    • /
    • 2021
  • Drape is one of the factors that determine the shape of clothes and is one of the very important factors in the textile and fashion industry. At a time when non-face-to-face transactions are being activated due to the impact of the coronavirus, more and more companies are asking for drape value. However, in the case of small and medium-sized enterprises (SMEs), it is difficult to measure the drape, because they feel the burden of time and money for measuring the drape. Therefore, this study aimed to generate a drape image for the material property value input using a conditional adversarial neural network through 3D simulation images generated by measuring digital properties. A drape image was created through the existing 736 digital property values, and this was used for model training. Then, the drape value was calculated for the image samples obtained through the generative model. As a result of comparing the actual drape experimental value and the generated drape value, it was confirmed that the error of the peak number was 0.75, and the average error of the drape value was 7.875

Generation of High-Resolution Chest X-rays using Multi-scale Conditional Generative Adversarial Network with Attention (주목 메커니즘 기반의 멀티 스케일 조건부 적대적 생성 신경망을 활용한 고해상도 흉부 X선 영상 생성 기법)

  • Ann, Kyeongjin;Jang, Yeonggul;Ha, Seongmin;Jeon, Byunghwan;Hong, Youngtaek;Shim, Hackjoon;Chang, Hyuk-Jae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • In the medical field, numerical imbalance of data due to differences in disease prevalence is a common problem. It reduces the performance of a artificial intelligence network, leading to difficulties in learning a network with good performance. Recently, generative adversarial network (GAN) technology has been introduced as a way to address this problem, and its ability has been demonstrated by successful applications in various fields. However, it is still difficult to achieve good results in solving problems with performance degraded by numerical imbalances because the image resolution of the previous studies is not yet good enough and the structure in the image is modeled locally. In this paper, we propose a multi-scale conditional generative adversarial network based on attention mechanism, which can produce high resolution images to solve the numerical imbalance problem of chest X-ray image data. The network was able to produce images for various diseases by controlling condition variables with only one network. It's efficient and effective in that the network don't need to be learned independently for all disease classes and solves the problem of long distance dependency in image generation with self-attention mechanism.

Text-to-Face Generation Using Multi-Scale Gradients Conditional Generative Adversarial Networks (다중 스케일 그라디언트 조건부 적대적 생성 신경망을 활용한 문장 기반 영상 생성 기법)

  • Bui, Nguyen P.;Le, Duc-Tai;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.764-767
    • /
    • 2021
  • While Generative Adversarial Networks (GANs) have seen huge success in image synthesis tasks, synthesizing high-quality images from text descriptions is a challenging problem in computer vision. This paper proposes a method named Text-to-Face Generation Using Multi-Scale Gradients for Conditional Generative Adversarial Networks (T2F-MSGGANs) that combines GANs and a natural language processing model to create human faces has features found in the input text. The proposed method addresses two problems of GANs: model collapse and training instability by investigating how gradients at multiple scales can be used to generate high-resolution images. We show that T2F-MSGGANs converge stably and generate good-quality images.

Enhancing CT Image Quality Using Conditional Generative Adversarial Networks for Applying Post-mortem Computed Tomography in Forensic Pathology: A Phantom Study (사후전산화단층촬영의 법의병리학 분야 활용을 위한 조건부 적대적 생성 신경망을 이용한 CT 영상의 해상도 개선: 팬텀 연구)

  • Yebin Yoon;Jinhaeng Heo;Yeji Kim;Hyejin Jo;Yongsu Yoon
    • Journal of radiological science and technology
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2023
  • Post-mortem computed tomography (PMCT) is commonly employed in the field of forensic pathology. PMCT was mainly performed using a whole-body scan with a wide field of view (FOV), which lead to a decrease in spatial resolution due to the increased pixel size. This study aims to evaluate the potential for developing a super-resolution model based on conditional generative adversarial networks (CGAN) to enhance the image quality of CT. 1761 low-resolution images were obtained using a whole-body scan with a wide FOV of the head phantom, and 341 high-resolution images were obtained using the appropriate FOV for the head phantom. Of the 150 paired images in the total dataset, which were divided into training set (96 paired images) and validation set (54 paired images). Data augmentation was perform to improve the effectiveness of training by implementing rotations and flips. To evaluate the performance of the proposed model, we used the Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM) and Deep Image Structure and Texture Similarity (DISTS). Obtained the PSNR, SSIM, and DISTS values of the entire image and the Medial orbital wall, the zygomatic arch, and the temporal bone, where fractures often occur during head trauma. The proposed method demonstrated improvements in values of PSNR by 13.14%, SSIM by 13.10% and DISTS by 45.45% when compared to low-resolution images. The image quality of the three areas where fractures commonly occur during head trauma has also improved compared to low-resolution images.

Combining Conditional Generative Adversarial Network and Regression-based Calibration for Cloud Removal of Optical Imagery (광학 영상의 구름 제거를 위한 조건부 생성적 적대 신경망과 회귀 기반 보정의 결합)

  • Kwak, Geun-Ho;Park, Soyeon;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1357-1369
    • /
    • 2022
  • Cloud removal is an essential image processing step for any task requiring time-series optical images, such as vegetation monitoring and change detection. This paper presents a two-stage cloud removal method that combines conditional generative adversarial networks (cGANs) with regression-based calibration to construct a cloud-free time-series optical image set. In the first stage, the cGANs generate initial prediction results using quantitative relationships between optical and synthetic aperture radar images. In the second stage, the relationships between the predicted results and the actual values in non-cloud areas are first quantified via random forest-based regression modeling and then used to calibrate the cGAN-based prediction results. The potential of the proposed method was evaluated from a cloud removal experiment using Sentinel-2 and COSMO-SkyMed images in the rice field cultivation area of Gimje. The cGAN model could effectively predict the reflectance values in the cloud-contaminated rice fields where severe changes in physical surface conditions happened. Moreover, the regression-based calibration in the second stage could improve the prediction accuracy, compared with a regression-based cloud removal method using a supplementary image that is temporally distant from the target image. These experimental results indicate that the proposed method can be effectively applied to restore cloud-contaminated areas when cloud-free optical images are unavailable for environmental monitoring.

Resolution Conversion of SAR Target Images Using Conditional GAN (Conditional GAN을 이용한 SAR 표적영상의 해상도 변환)

  • Park, Ji-Hoon;Seo, Seung-Mo;Choi, Yeo-Reum;Yoo, Ji Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.12-21
    • /
    • 2021
  • For successful automatic target recognition(ATR) with synthetic aperture radar(SAR) imagery, SAR target images of the database should have the identical or highly similar resolution with those collected from SAR sensors. However, it is time-consuming or infeasible to construct the multiple databases with different resolutions depending on the operating SAR system. In this paper, an approach for resolution conversion of SAR target images is proposed based on conditional generative adversarial network(cGAN). First, a number of pairs consisting of SAR target images with two different resolutions are obtained via SAR simulation and then used to train the cGAN model. Finally, the model generates the SAR target image whose resolution is converted from the original one. The similarity analysis is performed to validate reliability of the generated images. The cGAN model is further applied to measured MSTAR SAR target images in order to estimate its potential for real application.