• Title/Summary/Keyword: 조건부 랜덤 필드

Search Result 10, Processing Time 0.02 seconds

Design of a Human Activity Recognition System using Hidden Conditional Random Fields (은닉 조건부 랜덤 필드를 이용한 인간 행위 인식 시스템의 설계)

  • Kim, Hye-Suk;Han, Yu-Mi;Kim, In-Cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1332-1335
    • /
    • 2013
  • 본 논문에서는 키넥트 센서 데이터에 은닉 조건부 랜덤 필드 모델을 적용하여 인간의 일상 행위를 인식하는 시스템을 제안한다. 많은 고수준의 일상 행위들은 다수의 부속 행위들이 순차적 혹은 반복적으로 수행되어 나타나는 하나의 계층구조로 볼 수 있다. 따라서 제안하는 시스템에서는 이러한 고수준의 일상 행위들을 순차성과 계층성을 잘 표현할 수 있는 확률 그래프 모델의 하나인 은닉 조건부 랜덤 필드 모델로 모델링함으로써, 행위 인식률을 높이려고 시도하였다. 또한 제안하는 시스템에서는 효과적인 행위 모델의 학습과 적용을 위해, 모션 특징, 구조 특징, 손 위치 특징과 같은 다양한 종류의 특징들을 키넥트 센서 데이터로부터 추출하여 이들을 이용하였다. 그리고 12 가지 일상 행위들에 관한 코넬 대학의 CAD-60 데이터 집합을 이용한 다양한 실험을 통해, 제안하는 시스템의 우수한 인식 성능을 확인할 수 있었다.

Named Entity Recognition for Patent Documents Based on Conditional Random Fields (조건부 랜덤 필드를 이용한 특허 문서의 개체명 인식)

  • Lee, Tae Seok;Shin, Su Mi;Kang, Seung Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.419-424
    • /
    • 2016
  • Named entity recognition is required to improve the retrieval accuracy of patent documents or similar patents in the claims and patent descriptions. In this paper, we proposed an automatic named entity recognition for patents by using a conditional random field that is one of the best methods in machine learning research. Named entity recognition system has been constructed from the training set of tagged corpus with 660,000 words and 70,000 words are used as a test set for evaluation. The experiment shows that the accuracy is 93.6% and the Kappa coefficient is 0.67 between manual tagging and automatic tagging system. This figure is better than the Kappa coefficient 0.6 for manually tagged results and it shows that automatic named entity tagging system can be used as a practical tagging for patent documents in replacement of a manual tagging.

Unsuperised Image Segmentation Algorithm Using Markov Random Fields (마르코프 랜덤필드를 이용한 무관리형 화상분할 알고리즘)

  • Park, Jae-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8
    • /
    • pp.2555-2564
    • /
    • 2000
  • In this paper, a new unsupervised image segmentation algorithm is proposed. To model the contextual information presented in images, the characteristics of the Markov random fields (MRF) are utilized. Textured images are modeled as realizations of the stationary Gaussian MRF on a two-dimensional square lattice using the conditional autoregressive (CAR) equations with a second-order noncausal neighborhood. To detect boundaries, hypothesis tests over two masked areas are performed. Under the hypothesis, masked areas are assumed to belong to the same class of textures and CAR equation parameters are estimated in a minimum-mean-square-error (MMSE) sense. If the hypothesis is rejected, a measure of dissimilarity between two areas is accumulated on the rejected area. This approach produces potential edge maps. Using these maps, boundary detection can be performed, which resulting no micro edges. The performance of the proposed algorithm is evaluated by some experiments using real images as weB as synthetic ones. The experiments demonstrate that the proposed algorithm can produce satisfactorY segmentation without any a priori information.

  • PDF

A Study on Recognition of Citation Metadata using Bidirectional GRU-CRF Model based on Pre-trained Language Model (사전학습 된 언어 모델 기반의 양방향 게이트 순환 유닛 모델과 조건부 랜덤 필드 모델을 이용한 참고문헌 메타데이터 인식 연구)

  • Ji, Seon-yeong;Choi, Sung-pil
    • Journal of the Korean Society for information Management
    • /
    • v.38 no.1
    • /
    • pp.221-242
    • /
    • 2021
  • This study applied reference metadata recognition using bidirectional GRU-CRF model based on pre-trained language model. The experimental group consists of 161,315 references extracted by 53,562 academic documents in PDF format collected from 40 journals published in 2018 based on rules. In order to construct an experiment set. This study was conducted to automatically extract the references from academic literature in PDF format. Through this study, the language model with the highest performance was identified, and additional experiments were conducted on the model to compare the recognition performance according to the size of the training set. Finally, the performance of each metadata was confirmed.

Semantic Segmentation using Convolutional Neural Network with Conditional Random Field (조건부 랜덤 필드와 컨볼루션 신경망을 이용한 의미론적인 객체 분할 방법)

  • Lim, Su-Chang;Kim, Do-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.451-456
    • /
    • 2017
  • Semantic segmentation, which is the most basic and complicated problem in computer vision, classifies each pixel of an image into a specific object and performs a task of specifying a label. MRF and CRF, which have been studied in the past, have been studied as effective methods for improving the accuracy of pixel level labeling. In this paper, we propose a semantic partitioning method that combines CNN, a kind of deep running, which is in the spotlight recently, and CRF, a probabilistic model. For learning and performance verification, Pascal VOC 2012 image database was used and the test was performed using arbitrary images not used for learning. As a result of the study, we showed better partitioning performance than existing semantic partitioning algorithm.

Human Activity Recognition using View-Invariant Features and Probabilistic Graphical Models (시점 불변인 특징과 확률 그래프 모델을 이용한 인간 행위 인식)

  • Kim, Hyesuk;Kim, Incheol
    • Journal of KIISE
    • /
    • v.41 no.11
    • /
    • pp.927-934
    • /
    • 2014
  • In this paper, we propose an effective method for recognizing daily human activities from a stream of three dimensional body poses, which can be obtained by using Kinect-like RGB-D sensors. The body pose data provided by Kinect SDK or OpenNI may suffer from both the view variance problem and the scale variance problem, since they are represented in the 3D Cartesian coordinate system, the origin of which is located on the center of Kinect. In order to resolve the problem and get the view-invariant and scale-invariant features, we transform the pose data into the spherical coordinate system of which the origin is placed on the center of the subject's hip, and then perform on them the scale normalization using the length of the subject's arm. In order to represent effectively complex internal structures of high-level daily activities, we utilize Hidden state Conditional Random Field (HCRF), which is one of probabilistic graphical models. Through various experiments using two different datasets, KAD-70 and CAD-60, we showed the high performance of our method and the implementation system.

CRFs for Korean Morpheme Segmentation and POS Tagging (CRF에 기반한 한국어 형태소 분할 및 품사 태깅)

  • Na, Seung-Hoon;Yang, Seong-Il;Kim, Chang-Hyun;Kwon, Oh-Woog;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.12-15
    • /
    • 2012
  • 본 논문은 한국어 형태소 분할 및 품사 태깅을 위해 조건부 랜덤 필드 (CRF: conditional random field)에 기반한 방식을 제안한다. 제안 방법은 1) 형태소 분할 단계 2) 품사 태깅 단계 3) 복합형태소 분할 및 태깅 단계의 세 단계로 이루어진다. 처음 두 단계는 CRF방법에 기반을 두고, 세 번째 단계에서는 일반화된 HMM (lattice-HMM)을 활용한다. 제안 방법은 세종 말뭉치 코퍼스에서 5-fold cross-validation로 평가한 결과, 약 96%의 품사 태깅 성능을 보여주었다.

  • PDF

A Out-of-vocabulary Processing Technology for the Spoken Language Understanding Module of a Dialogue Based Private Secretary Software (대화형 개인 비서 시스템의 언어 인식 모듈(SLU)을 위한 미등록어(OOV) 처리 기술)

  • Lee, ChangSu;Ko, YoungJoong
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.3-8
    • /
    • 2014
  • 대화형 개인 비서 시스템은 사람의 음성을 통해 인식된 음성 인식 결과를 분석하여 사용자에게 제공할 정보가 무엇인지 파악한 후, 정보가 포함되어 있는 앱(app)을 실행시켜 사용자가 원하는 정보를 제공하는 시스템이다. 이러한 대화형 개인 비서 시스템의 가장 중요한 모듈 중 하나는 음성 대화 인식 모듈(SLU: Spoken Language Understanding)이며, 발화의 "의미 분석"을 수행하는 모듈이다. 본 논문은 음성 인식결과가 잘못되어 의미 분석이 실패하는 것을 방지하기 위하여 음성 인식 결과에서 잘못 인식된 명사, 개체명 단어를 보정 시켜주는 미등록어(OOV:Out-of-vocabulary) 처리 모듈을 제안한다. 제안하는 미등록어 처리 모듈은 미등록어 탐색 모듈과 미등록어 변환 모듈로 구성되며, 미등록어 탐색 모듈을 통해 사용자의 발화에서 미등록어를 분류하고, 미등록어 변환 모듈을 통해 미등록어를 사전에 존재하는 유사한 단어로 변환하는 방법을 제안한다. 제안한 방법을 적용하였을 때의 실험 결과, 전체 미등록어 중 최대 52.5%가 올바르게 수정되었으며, 음성 인식 결과를 그대로 사용했을 경우 "원본 문장"과 문장 단위 67.6%의 일치율을 보인 것에 반해 미등록어 처리 모듈을 적용했을 때 17.4% 개선된 최대 85%의 문장 단위 일치율을 보였다.

  • PDF

Satellite Land Cover Map Generation Using Deep Learning (딥러닝을 이용한 인공위성영상의 토지피복지도 생성기술)

  • Kim, Youngeun;Lee, Hyukzae;Park, Hyoungseob;Ryu, Kwangsun;Kim, Changick
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.240-242
    • /
    • 2019
  • 본 논문에서는 대한민국 국토에 대한 토지피복지도를 인공위성 영상으로부터 생성하는 기술을 제안한다. 제안하는 방법은 먼저 합성곱 신경망을 이용하여 인공위성 영상의 각 패치를 4 종류의 토지 용도로 분류한다. 이후 인공위성 영상과 토지 용도 분류 결과를 조건부 랜덤 필드에 적용하여 픽셀 단위로 색상과 질감이 유사한 영역을 같은 토지 용도로 분류될 수 있도록 하여 정확한 토지피복지도를 생성한다. 현재 대한민국 국토에 대한 토지피복지도 생성을 위해 구축된 데이터 세트가 없기 때문에 본 연구에서는 합성곱 신경망 학습을 위한 데이터 세트를 직접 구축하였다. 이를 위해 환경공간정보 서비스 웹사이트로부터 인공위성 영상을 취득하고, 각 영상을 패치 단위로 나누어 토지 용도를 직접 분류하였다. 실험 결과를 통해 제안하는 토지 용도 분류 합성곱 신경망의 성능을 평가하였으며, 최종 생성된 토지피복지도는 제안하는 방법이 효과적으로 토지 용도를 분류할 수 있음을 나타낸다.

  • PDF

KONG-DB: Korean Novel Geo-name DB & Search and Visualization System Using Dictionary from the Web (KONG-DB: 웹 상의 어휘 사전을 활용한 한국 소설 지명 DB, 검색 및 시각화 시스템)

  • Park, Sung Hee
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.3
    • /
    • pp.321-343
    • /
    • 2016
  • This study aimed to design a semi-automatic web-based pilot system 1) to build a Korean novel geo-name, 2) to update the database using automatic geo-name extraction for a scalable database, and 3) to retrieve/visualize the usage of an old geo-name on the map. In particular, the problem of extracting novel geo-names, which are currently obsolete, is difficult to solve because obtaining a corpus used for training dataset is burden. To build a corpus for training data, an admin tool, HTML crawler and parser in Python, crawled geo-names and usages from a vocabulary dictionary for Korean New Novel enough to train a named entity tagger for extracting even novel geo-names not shown up in a training corpus. By means of a training corpus and an automatic extraction tool, the geo-name database was made scalable. In addition, the system can visualize the geo-name on the map. The work of study also designed, implemented the prototype and empirically verified the validity of the pilot system. Lastly, items to be improved have also been addressed.