• 제목/요약/키워드: 조건부자기회귀모형

검색결과 31건 처리시간 0.024초

비만율 자료에 대한 베이지안 공간 분석 (Bayesian spatial analysis of obesity proportion data)

  • 최정순
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1203-1214
    • /
    • 2016
  • 비만은 그 자체가 질병이면서 다른 질병의 위험인자로 사회경제학적 요인과 관련성이 높다. 급증한 국내 비만인구에 대한 사회적 차원에서의 예방을 위하여 비만과 연관성이 있는 사회경제적 요인을 파악하는 것이 중요하다. 특히, 비만과 사회경제학적 요인간의 연관성은 성별에 따라 상이할 수 있으며 지역적 변동성 역시 존재한다. 본 논문에서는 공간적 상관성을 고려하여 비만율에 영향을 미치는 사회경제적 요인의 효과를 성별에 따라 추정하고자 한다. 공간적 상관성을 설명하기 위하여 베이지안 접근법을 기반으로 한 조건부 자기회귀모형을 고려하였다. 실증예제로 2010년 서울시 25개 자치구별 비만율 자료에 대하여 제안한 공간 모형과 공간적 상관성을 고려하지 않은 모형을 적합시켜본 결과, 공간적 상관성을 고려한 모형이 모형의 적합도와 예측력 측면에서 더 우수함을 알 수 있었다.

출발지 공간 연관성을 고려한 지역별 수단선택확률 추정 연구 (Estimating Probability of Mode Choice at Regional Level by Considering Spatial Association of Departure Place)

  • 엄진기;박만식;허태영
    • 한국철도학회논문집
    • /
    • 제12권5호
    • /
    • pp.656-662
    • /
    • 2009
  • 일반적으로 교통수단선택 모형은 이용자의 인구 및 개인통행특성 등을 반영한 수단별 선호도를 효용함수로 구축하여 분석하고 있다. 본 연구에서는 이용자의 출발지에 대한 공간적 연관성을 수단선택모형에 고려한 방법을 제시하였다. 이를 위하여 공간적 연관성을 포함하는 공간로지스틱 회귀모형을 고려하였다. 신뢰성있는 추정값을 얻기 위해 베이지안 기법을 적용하였으며 이 연구에서 제시한 방법론은 수단선호도 조사가 이루어지지 않은 지역에 대해서도 수단분담률을 추정할 수 있을 것으로 기대된다.

신경망을 이용한 비선형 시계열 자료의 예측 (Prediction for Nonlinear Time Series Data using Neural Network)

  • 김인규
    • 디지털융복합연구
    • /
    • 제10권9호
    • /
    • pp.357-362
    • /
    • 2012
  • 본 논문에서는 분산이 각각 다른 이분산성을 갖는 비선형 시계열 자료를 가지고, 비선형 시계열 모형중 1차 일반화 확률계수 자기회귀모형(GRCA(1))과 자료의 형태에 상관없이 적용할 수 있는 신경망 모형을 이용하여 예측을 해서 어느 모형이 최소 평균예측오차제곱의 기준에서 비선형 시계열 자료의 예측에 적합한지를 비교 분석 하는 것이다. 조건부 이분산 모형에 따르는 자료로 확인된 종합주가지수 변동율에 대한 사례 분석 결과를 보면 신경망 모형은 단기 예측에서 좋은 예측 결과를 보였고, 비선형 모형인 GRCA(1) 모형은 장기 예측에서 좋은 예측 결과를 보여 주었다.

딥러닝 분석을 이용한 중국 역내·외 위안화 변동성 예측 (A deep learning analysis of the Chinese Yuan's volatility in the onshore and offshore markets)

  • 이우식;전희주
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권2호
    • /
    • pp.327-335
    • /
    • 2016
  • 2008년 글로벌 금융위기 이후 중국은 위안화 국제화의 점진적 추진을 진행하면서 중국상하이 외환시장과 중국홍콩 외환시장에서 거래되는 통화인 역내위안화와 역외위안화를 형성시켰다. 본 연구는 위안화 국제화와 점진적인 중국 자본계정 개방에 따라 급변하는 외환시장상황의 변동성을 정확하게 파악하기 위해서 GARCH모형 (일반화된 자기회귀 조건부이분산성모형)에 다단계인공신경망을 결합한 MLP-GARCH 모형과 GARCH모형과 기계학습의 일종인 딥러닝 (deep learning)을 통합한 DL-GARCH을 가지고 위안화 변동성예측을 비교 실험과 분석을 하였다. 비교분석 결과 DL-GARCH 모형은 MLP-GARCH보다 모형 위안화 역내 외 환율변동성 예측 면에서 더욱 더 개선된 예측값을 제공하였다. 그래서 이분산시계열모형을 딥러닝과 결합한 DL-GARCH 모형은 시계열의 환율 변동성 예측 문제에 딥러닝을 응용할 수 있음을 확인하였다. 향후 이분산시계열과 결합된 딥러닝 모형은 다른 금융시계열 데이터에 응용하여 그 일반화 가능성을 높일 수 있을 것이다.

다중프랙탈 확률과정과 주가형성 (Multifractal Stochastic Processes and Stock Prices)

  • 이일균
    • 재무관리연구
    • /
    • 제20권2호
    • /
    • pp.95-126
    • /
    • 2003
  • 주가가 정규분포보다 꼬리가 두꺼운 확률변수인 점, 주가의 변동이 군집화를 이루고 있는 현상, 주가가 장기기억과정에 의하여 생성되고 있다는 점이 실증분석을 통하여 밝혀지고 있다. 주가를 형성시키는 이 세 요소가 하나의 모형내에 통합되지 못하고 있는 실정인데. 이 세 요소가 통합되는 확률과정이 다중프랙탈과정이다. 다중프랙탈과정은 표준브라운 운동과정과 랜덤시간 변형과정의 결합을 통하여 얻게되는 확률과정이다. 이 과정은 Ito형의 확률과정에 포함되지 않는 연속과정인 것이다. 본 논문에서는 주가시계열의 Pareto-Levy 분포성, 분포의 두꺼운 꼬리성질, 시계열상관이 쌍곡선율로 완만하고 무척 더디게 감소하여 장기에 걸쳐서 평균에 회귀하는 장기기억성, 군집화 현상, 거래시간의 통합성을 포괄하는 다중프랙탈과정의 성질을 살펴보고 이 과정이 주가를 생성시키는 과정인지 아닌지를 검정하는데 그 목적을 둔다. 다중프랙탈과정은 표준브라운 운동과 시간변형과정의 통합을 통하여 형성된 확률과정이다. 시간변형과정은 주가의 군집화 현상을 포착하는 과정이다. 표준브라운 운동은 이 운동과 시간 변형과정의 통합화 속에서 분수브라운운동의 성질이 용해되어 장기기억과정을 포착해준다. 다중프랙탈성은 관찰치들의 시간척축이 변함에 따라 발생하는 확률과정의 적률에 가해진 일련의 제약조건이라 할 수 있다. 이 모형은 마팅게일 성질을 만족하는 모형으로 변형시킬 수도 있으며 자기회귀 조건부 이분산 모형을 대체할 수 있는 모형이다. 이 모형에서는 자기상관을 가지고 있지 않은 수익률에도 적용가능하며, 따라서 시장효율성을 점검하는데에도 이용할 수 있다. 이 모형은 축척일치성이라는 성질이 존재하므로 데이터의 총량화가 무리 없이 이루어질 수 있다. 다중프랙탈은 국소축척구성성질을 가지고 있으며, 시간의 흐름에 따라 변할 수 있는 국소축척구성요소를 내포하고 있다. 자본자산의 다중프랙탈 과정을 한국종합주가지수에 적용하였는 바, 이 과정이 한국종합주가 지수의 행동 잘 설명하고 있다. 따라서 한국종합주가지수는 분포의 꼬리의 두꺼움, 자산가격의 군집화현상, 특이한 값, 장기기억을 내포하고 있다.

  • PDF

예측력 비교를 통한 지역별 최적 변동성 모형 연구 (Application of Volatility Models in Region-specific House Price Forecasting)

  • 장용진;홍민구
    • 부동산연구
    • /
    • 제27권3호
    • /
    • pp.41-50
    • /
    • 2017
  • 변동성 모형을 이용한 국내의 주택가격에 대한 기존의 연구에서는 변동성모형을 어떻게 주택시장분석에 적용할 수 있는지를 보여주고 있지만 최근 국내의 지역주택시장들에 나타나는 유의미한 변화를 반영하는데는 한계가 존재할 수 밖에 없다. 본 연구에서는 변동성모형을 적용하여 전국의 각 지역별 주택시장을 분석하고 이를 통해 미래의 지역별 주택시장의 가격변동을 실제적으로 예측하였다. AR(1)-ARCH(1), AR(1)-GARCH(1,1), AR(1)-EGARCH(1,1,1) 모형을 통하여 지역주택시장에 ARCH 및 GARCH효과가 존재하는 것을 확인하였다. 그리고 각 지역의 예측력을 비교하여 지역별 최적예측모형을 선정하였으며, 이러한 지역별 최적모형의 선정이 실제적으로 어떻게 이용될 수 있는지를 보여주기 위하여 2017년 하반기의 각 지역주택시장의 가격변동을 선정된 지역별 최적모형을 이용하여 예측하였다.

공간 다수준 분석을 이용한 부산지역 암발생 및 암사망 추정 (Cancer incidence and mortality estimations in Busan by using spatial multi-level model)

  • 고영규;한준희;윤태호;김창훈;노맹석
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권5호
    • /
    • pp.1169-1182
    • /
    • 2016
  • 한국인의 전형적인 사망 원인인 암은 보건 분야에서 중요한 문제이다. 통계청이 제시한 Cause of death statistics (2014)에 따르면, 7대 광역시 중 부산의 표준화 사망률 (standardized mortality rate; SMR)이 가장 높게 나타났다. 이 논문에서는 부산지역암센터의 암등록자료를 이용하여 암발생률과 암사망률의 정도를 추정하고자 한다. 2003~2009년 자료를 대상으로 구/동과 같은 소지역 단위를 고려하였으며, 전체 암과 4대 주요암 (위암, 대장암, 폐암, 간암)에 대해 분석하였다. 공간 상관성을 고려한 공간 다수준 모형을 통해 모형 선택과 모수 추정을 수행하였다. 공간 효과에 대해서는 조건부 자기회귀 (conditional autoregressive; CAR)를 가정하였으며 WinBUGS를 이용하였다. 분석의 결과로 각 지역에서의 공간 효과를 어떻게 분석하고 해석하는지 제시하였다.

베이지안 모형을 활용한 국내 노인 자살률 질병지도 (Bayesian Analysis and Mapping of Elderly Korean Suicide Rates)

  • 이자연;김달호
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.325-334
    • /
    • 2015
  • 한국의 고령화는 매우 빠른 속도로 진행되고 있고, 노인자살은 노인의 주요 사망원인이며 노인은 다른 연력층보다 자살의 고위험군으로 알려져있다. 고령화 시대에서 노인의 자살은 사회적인 문제로 대두되고 있으며 이를 예방하기 위해 노인자살에 대한 위험요인을 파악하고, 지역적 차이를 확인하는 것이 중요하다. 특히 노인의 자살문제에서는 지역사회와의 통합결여 등이 큰 원인으로 고려되기 때문이다. 따라서, 본 논문에서는 공간적 상관관계를 고려하여 추정된 표준화사망률을 이용하여 질병지도를 작성하고자 하였다. 공간적 상관관계를 고려하기 위해서 simultaneous CAR model을 사용하였다. 2006년부터 2010년까지 통계청 사망자료를 이용하여 국내 시군구별 노인자살자수에 대해 두 모형을 적합시켜본 결과, 공간적 상관관계를 고려하지 않은 모형보다 공간적 상관관계를 고려한 모형이 더 좋은 모형임을 보였다. 또한 효율적인 베이지안 추론을 위해 격자망 방법 등을 고려하였다.

중국증권시장의 정보이전효과에 관한 연구 (A study on the information transfer effect among the China stock markets)

  • 이상우;이의경
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1075-1084
    • /
    • 2012
  • 본 논문은 중국의 상해, 심천, 홍콩증권시장간의 정보이전효과를 연구한 것이다. 세 개의 중국 증권시장은 모두 미국의 증권시장수익률에 강하게 영향을 받는데 그 정도는 개방화가 제일 잘된 홍콩증권시장이 가장 크며 상해증권시장, 심천증권시장의 순으로 영향을 받는 것으로 나타나고 있다. 상해증권시장이나 심천증권시장은 서로 간에 수익률이전효과나 변동성전이효과가 존재하지 않지만 이 두 시장은 모두 홍콩증권시장수익률의 영향을 받는 것으로 나타났다. 하지만 미국증권시장의 움직임을 통제하면 이러한 효과는 사라지게 되어 중국의 증권시장간의 정보이전효과는 존재하지 않는 것으로 나타나고 있다. 이러한 결론은 중국의 세 개의 증권시장이 상호독립적인 성격이 강하다는 것을 의미하며, 중국의 증권시장 연구 시 시장 간의 독립성을 반영해야 할 것으로 생각된다.

격자자료분석을 위한 이웃정보시스템의 비교 (Comparison of Neighborhood Information Systems for Lattice Data Analysis)

  • 이강석;신기일
    • 응용통계연구
    • /
    • 제21권3호
    • /
    • pp.387-397
    • /
    • 2008
  • 최근 공간통계를 이용한 많은 연구가 진행되고 있고 공간통계학을 접목한 소지역 추정(small area estimation) 방법이 좋은 결과를 주고 있는 것으로 알려져 있다 소지역 추정에 사용되는 격자자료(lattice data) 분석에서 이웃정보를 정의하는 것은 자료 분석의 성패를 결정짓는 매우 중요한 부분이다. 그러나 기존에 사용된 대부분의 이웃정보시스템은 경계선을 공유할 때 이웃으로 정하는 방법을 사용하고 있다. 이에 본 논문에서는 경계선 공유를 이용한 이웃정보시스템 뿐 아니라 다른 여러 이웃정보시스템을 구하는 방법을 설명하고 2001년 경제활동자료를 이용하여 이 시스템들을 비교하였다