• Title/Summary/Keyword: 조강시멘트

Search Result 85, Processing Time 0.022 seconds

Development of high performance shotcrete for permanent shotcrete tunnel linings (Application of high-early strength cement with alkali-free accelerator in spring water condition) (영구 숏크리트 터널 라이닝 구축을 위한 고성능 숏크리트 개발 (용수부에서의 조강시멘트와 alkali-free급결제 적용 검토))

  • Park, Hae Geun;Lee, Myeong Sub;Kim, Jea Kwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 2003
  • Since the mid of 1990, permanent shotcrete tunnel linings such as Single-shell and NMT have been constructed in many countries for reducing the construction time and lowing construction costs instead of conventional in-situ concrete linings. Among essential technologies for successful application of permanent shotcrete linings, high performance shotcrete having high strength, high durability and better pumpability has to be developed in advance as an integral component. This paper presents the idea and first experimental attempts to increase early strength and bond strength of wet-mixed Steel Fiber Reinforced Shotcrete (SFRS) in spring water condition. In order to increase early behavior of SFRS, a new approach using high-early strength cement with alkali-free liquid accelerator has been investigated. From the test results, wet-mix SFRS with high-early strength cement and alkali-free accelerator exhibited excellent early compressive strength improvement compared to the ordinary portland cement and good bond strength even under spring water condition.

  • PDF

Mechanical Properties of Early Strength Mortar with Ground Granulated Blast Furnace Slag and Expansive Additive (고로슬래그미분말 및 팽창재를 혼입한 조강형 모르타르의 역학적 특성)

  • Koo, Kyung-Mo;Choi, Jae-Won;You, Byeong-Know;Cha, Wan-Ho;Kang, Bong-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.177-184
    • /
    • 2021
  • In this study, the effects of ground granulated blast furnace slag(GGBFS) and expansive additive(EA) on early strength mortar were examined for the purpose of reducing carbon and improving cement performance. As a result, ealry strength Portland cement(EPC) tended to decrease in flow compared to ordinary Portland cement(OPC), but binder with EPC and GGBFS was possible to obtain higher liquidity than OPC. EPC showed higher compressive strength and shrinkage than OPC. The compressive strength of specimen with EPC and GGBFS was reduced proportionally to the replacement ratio of GGBFS. The replacement ratio of GGBFS above the compressive strength equivalent to OPC was higher under low temperature conditions. The use of GGBFS resulted in high shrinkage compared to OPC, and this characteristic was even greater under low temperature conditions. The shrinkage of specimen with EA was decreased in early ages, but was higher than the OPC in long-term ages.

An Economic Mix Design Methodology for the Development of Concrete Strength at Low Temperature (저온에서의 콘크리트 강도 확보를 위한 경제적 배합 방안)

  • Kim, Sang-Chel;Kim, Yong-Jic;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.95-103
    • /
    • 2012
  • Precast concrete method is known to have advantages of minimizing works in the construction, controlling concrete quality easily and saving construction period due to only fabrication work in the construction field, but it needs to apply steam curing to accelerate early concrete strength. In the meanwhile, the oil cost for steam curing has been continuously increased because of political instability in the middle East and international economic shaky. Thus, this study addresses the development of precast/ prestressed concrete which has over 14MPa at 1 day age and specified concrete strength of 40MPa at low temperature, not applying steam curing. Tests were carried out in terms of material characteristics in fresh concrete and compressive strength using 3 types of cement such as Type I, Type III and rapid hardening compound cement. As results of tests, it is found that cements for rapid hardening had disadvantages with respect to slump, slump loss, and air content, but showed higher compressive strength than specified one, especially the highest value when using rapid hardening compound.

  • PDF

Effect of Chlorine Content in Clinker on Setting and Compressive Strength of Early Strength Cement (클링커 염소 함량이 조강형 시멘트의 응결 및 압축강도에 미치는 영향)

  • Jae-Won Choi;Byoung-Know You;Dong-Kyun Seo;Kyoung-Seok Kim;Min-Cheol Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.218-225
    • /
    • 2023
  • In this study, we examine the feasibility of using chlorine in clinker as an early-strength cement by the effect of accelerating the cement hydration reaction of chlorine. Clinker with a chlorine content of 200-1,000 ppm was prepared using actual cement kilns, and 46 cement samples were prepared by adding gypsum and admixtures(GGBFs and limestone). We measured consistency, setting, 1-28 days compressive strength and analyzed them statistically. Test results indicated that an increase of the chlorine content resulted in shortening of initial and final setting time and the improvement of 1 day compressive strength. But the 28 days compressive strength was decreased. Specifically, when the chlorine content was increased from 230 to 965 ppm, the 1 day compressive strength increased up to 4.6 MPa, improvement effect was superior to that of increasing Blaine in the range of 3,400-3,970 cm2/g.

Study on the Development of Super-High-Early-Strength Mortar Using the Hardening catalyst and High early strength cement (조강시멘트를 사용한 초조강 모르타르 개발에 관한 연구)

  • Cho, In-Sung;Hur, Yeon-Ok;Min, Tae-Beom;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.217-219
    • /
    • 2012
  • In this study, the experiment was conducted in the level of mortar as one of the basic studies on pre-cast concrete which acceleration curing is not done. This study has the purpose to develop the strength of mortar into 20MPa within 6 hours in the condition of room temperature using admixtures which can accelerate C3S hydration reaction. In this experiment, W/C was fixed into 20%, PCE which can stimulate C3S was used as an accelerating admixture. From the results of this experiment, maximum content of accelerating admixture was 1%. Also, as more than 20MPa was measured through 6-hour compressive strength, it can be known that strength can be developed without steam-curing.

  • PDF

Study on the Strength Development of cement paste using High-Early-Strength Cement and Hardening Accelerator (조강시멘트와 경화촉진제가 압축강도에 미치는 영향에 대한 실험적 연구)

  • Min, Tae-Beom;Jo, In-Seong;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.56-58
    • /
    • 2013
  • In order to develop concrete generating compressive strength of 15MPa~30MPa aging for 6~12 hours in the room temperature curing, Hardening accelerator containing Ca2+ mixed with rapid hardening portland cement containing C3S in quantity. The result was that the more addictive contents of Hardening accelerator is, the more greatly early compressive strength was improved. That s because the composition of Ca(OH)2 was mass-produced at early-ages.

  • PDF

An Experimental Study on Reduction of Working Period of Concrete using High Early Strength Binder (조강형 결합재를 사용한 콘크리트의 공기단축에 관한 실험적 연구)

  • Kim, Dong-Jin;Kim, Min-Jeong;Lee, Sang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.513-516
    • /
    • 2008
  • Recently, a demand for reduction of construction cost by reducing construction period is increasing because of the slump of the construction business, the increasing price of raw-materials and the enforcement of after-sale system. As a method of reducing construction period, many construction companies usually apply a method of reducing curing period. But if they use an existing early strength cement or admixture, they spend a heavy cost on materials and there are many problems, such as a heat of hydration and a loss of workability. The purpose of this research is a reduction of construction cost by reducing construction period as a earlier removal time of form. To check up application of concrete using high early strength binder and admixture, comparative tests were carried out with concrete using an existing early strength cement or admixture such as tests of diurnal variation, setting time and compressive strength.

  • PDF