• Title/Summary/Keyword: 제한된 볼츠만 머신

Search Result 3, Processing Time 0.018 seconds

RBM-based distributed representation of language (RBM을 이용한 언어의 분산 표상화)

  • You, Heejo;Nam, Kichun;Nam, Hosung
    • Korean Journal of Cognitive Science
    • /
    • v.28 no.2
    • /
    • pp.111-131
    • /
    • 2017
  • The connectionist model is one approach to studying language processing from a computational perspective. And building a representation in the connectionist model study is just as important as making the structure of the model in that it determines the level of learning and performance of the model. The connectionist model has been constructed in two different ways: localist representation and distributed representation. However, the localist representation used in the previous studies had limitations in that the unit of the output layer having a rare target activation value is inactivated, and the past distributed representation has the limitation of difficulty in confirming the result by the opacity of the displayed information. This has been a limitation of the overall connection model study. In this paper, we present a new method to induce distributed representation with local representation using abstraction of information, which is a feature of restricted Boltzmann machine, with respect to the limitation of such representation of the past. As a result, our proposed method effectively solves the problem of conventional representation by using the method of information compression and inverse transformation of distributed representation into local representation.

기계학습 및 딥러닝 기술동향

  • Mun, Seong-Eun;Jang, Su-Beom;Lee, Jeong-Hyeok;Lee, Jong-Seok
    • Information and Communications Magazine
    • /
    • v.33 no.10
    • /
    • pp.49-56
    • /
    • 2016
  • 본 논문에서는 패턴 인식 및 회귀 문제를 풀기 위해 쓰이는 기계학습에 대한 전반적인 이론과 설계방법에 대해 알아본다. 대표적인 기계학습 방법인 신경회로망과 기저벡터머신 등에 대해 소개하고 이러한 기계학습 모델을 선택하고 구축하는 데에 있어 고려해야 하는 문제점들에 대해 이야기 한다. 그리고 특징 추출 과정이 기계학습 모델의 성능에 어떻게 영향을 미치는지, 일반적으로 특징 추출을 위해 어떤 방법들이 사용되는 지에 대해 알아본다. 또한, 최근 새로운 패러다임으로 대두되고 있는 딥러닝에 대해 소개한다. 자가인코더, 제한볼츠만기계, 컨볼루션신경회로망, 회귀신경회로망과 같이 딥러닝 기술이 적용된 대표적인 신경망 구조에 대해 설명하고 기존의 기계학습 모델과 비교하여 딥러닝이 가지고 있는 특장점을 알아본다.

Mid-Term Energy Demand Forecasting Using Conditional Restricted Boltzmann Machine (조건적 제한된 볼츠만머신을 이용한 중기 전력 수요 예측)

  • Kim, Soo-Hyun;Sun, Young-Ghyu;Lee, Dong-gu;Sim, Is-sac;Hwang, Yu-Min;Kim, Hyun-Soo;Kim, Hyung-suk;Kim, Jin-Young
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.127-133
    • /
    • 2019
  • Electric power demand forecasting is one of the important research areas for future smart grid introduction. However, It is difficult to predict because it is affected by many external factors. Traditional methods of forecasting power demand have been limited in making accurate prediction because they use raw power data. In this paper, a probability-based CRBM is proposed to solve the problem of electric power demand prediction using raw power data. The stochastic model is suitable to capture the probabilistic characteristics of electric power data. In order to compare the mid-term power demand forecasting performance of the proposed model, we compared the performance with Recurrent Neural Network(RNN). Performance comparison using electric power data provided by the University of Massachusetts showed that the proposed algorithm results in better performance in mid-term energy demand forecasting.