• Title/Summary/Keyword: 제품모델

Search Result 1,774, Processing Time 0.03 seconds

Customer Voices in Telehealth: Constructing Positioning Maps from App Reviews (고객 리뷰를 통한 모바일 앱 서비스 포지셔닝 분석: 비대면 진료 앱을 중심으로)

  • Minjae Kim;Hong Joo Lee
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.69-90
    • /
    • 2023
  • The purpose of this study is to evaluate the service attributes and consumer reactions of telemedicine apps in South Korea and visualize their differentiation by constructing positioning maps. We crawled 23,219 user reviews of 6 major telemedicine apps in Korea from the Google Play store. Topics were derived by BERTopic modeling, and sentiment scores for each topic were calculated through KoBERT sentiment analysis. As a result, five service characteristics in the application attribute category and three in the medical service category were derived. Based on this, a two-dimensional positioning map was constructed through principal component analysis. This study proposes an objective service evaluation method based on text mining, which has implications. In sum, this study combines empirical statistical methods and text mining techniques based on user review texts of telemedicine apps. It presents a system of service attribute elicitation, sentiment analysis, and product positioning. This can serve as an effective way to objectively diagnose the service quality and consumer responses of telemedicine applications.

Analysis of Users' Sentiments and Needs for ChatGPT through Social Media on Reddit (Reddit 소셜미디어를 활용한 ChatGPT에 대한 사용자의 감정 및 요구 분석)

  • Hye-In Na;Byeong-Hee Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.79-92
    • /
    • 2024
  • ChatGPT, as a representative chatbot leveraging generative artificial intelligence technology, is used valuable not only in scientific and technological domains but also across diverse sectors such as society, economy, industry, and culture. This study conducts an explorative analysis of user sentiments and needs for ChatGPT by examining global social media discourse on Reddit. We collected 10,796 comments on Reddit from December 2022 to August 2023 and then employed keyword analysis, sentiment analysis, and need-mining-based topic modeling to derive insights. The analysis reveals several key findings. The most frequently mentioned term in ChatGPT-related comments is "time," indicative of users' emphasis on prompt responses, time efficiency, and enhanced productivity. Users express sentiments of trust and anticipation in ChatGPT, yet simultaneously articulate concerns and frustrations regarding its societal impact, including fears and anger. In addition, the topic modeling analysis identifies 14 topics, shedding light on potential user needs. Notably, users exhibit a keen interest in the educational applications of ChatGPT and its societal implications. Moreover, our investigation uncovers various user-driven topics related to ChatGPT, encompassing language models, jobs, information retrieval, healthcare applications, services, gaming, regulations, energy, and ethical concerns. In conclusion, this analysis provides insights into user perspectives, emphasizing the significance of understanding and addressing user needs. The identified application directions offer valuable guidance for enhancing existing products and services or planning the development of new service platforms.

Temperature Prediction and Control of Cement Preheater Using Alternative Fuels (대체연료를 사용하는 시멘트 예열실 온도 예측 제어)

  • Baasan-Ochir Baljinnyam;Yerim Lee;Boseon Yoo;Jaesik Choi
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.3-14
    • /
    • 2024
  • The preheating and calcination processes in cement manufacturing, which are crucial for producing the cement intermediate product clinker, require a substantial quantity of fossil fuels to generate high-temperature thermal energy. However, owing to the ever-increasing severity of environmental pollution, considerable efforts are being made to reduce carbon emissions from fossil fuels in the cement industry. Several preliminary studies have focused on increasing the usage of alternative fuels like refuse-derived fuel (RDF). Alternative fuels offer several advantages, such as reduced carbon emissions, mitigated generation of nitrogen oxides, and incineration in preheaters and kilns instead of landfilling. However, owing to the diverse compositions of alternative fuels, estimating their calorific value is challenging. This makes it difficult to regulate the preheater stability, thereby limiting the usage of alternative fuels. Therefore, in this study, a model based on deep neural networks is developed to accurately predict the preheater temperature and propose optimal fuel input quantities using explainable artificial intelligence. Utilizing the proposed model in actual preheating process sites resulted in a 5% reduction in fossil fuel usage, 5%p increase in the substitution rate with alternative fuels, and 35% reduction in preheater temperature fluctuations.

A Study on Case for Localization of Korean Enterprises in India (인도 진출 한국기업의 현지화에 관한 사례 연구)

  • Seo, Min-Kyo;Kim, Hee-Jun
    • International Commerce and Information Review
    • /
    • v.16 no.4
    • /
    • pp.409-437
    • /
    • 2014
  • The purpose of this study is to present the specific ways of successful localization by analyzing the success and failures case for localization within the framework of the strategic models through a theoretical background and strategic models of localization. The strategic models of localization are divided by management aspects such as the localization of product and sourcing, the localization of human resources, the localization of marketing, the localization of R&D, harmony with a local community and delegation of authority between headquarters and local subsidiaries. The results, by comparing and analyzing the success and failures case for localization of individual companies operating in India, indicate that in terms of localization of product and sourcing, there are successful companies which procure a components locally and produce a suitable model which local consumers prefer and the failed companies which can not meet local consumers' needs. In case of localization of human resources, most companies recognize the importance of this portion and make use of superior human resource aggressively through a related education. In case of localization of marketing, It is found that the successful companies perform pre-market research & management and build a effective marketing skills & after service network and select local business partner which has a technical skills and carry out a business activities, customer support, complaint handling with their own organization. In terms of localization of R&D, the successful major companies establish and operate R&D center to promote a suitable model for local customers. In part of harmony with a local community, it shows that companies which made a successful localization understand the cultural environment and contribute to the community through CSR. In aspect of delegation of authority between headquarters and local subsidiaries, it is found that most of Korean companies are very weak for this part. there is a tendency to be determined by the head office rather than local subsidiaries. Implication of this thesis is that Korean enterprises in India should carry forward localization of products and components, foster of local human resource who recognize management and system of company and take part in voluntary market strategy decision, wholly owned subsidiary, establishment and operation of R & D center, understanding of local culture and system, corporate social responsibility, autonomy in management.

  • PDF

Research on Mobile Wheelchair Lift Design (이동식 휠체어 리프트 디자인 연구)

  • 이명기
    • Archives of design research
    • /
    • v.15 no.4
    • /
    • pp.275-284
    • /
    • 2002
  • To improve the social and economic position of the disabled people and secure their human rights, an integrated society should be buill. To build such a society, an adequate access should be provided to the movement or in using buildings or facilities. The inconveniences from social life on the part of the disabled people might not result from their impairment or disability, but from physical and social barriers in the environment surrounding them. Therefore, it is necessary to reconstruct entire systems of the society as a disabled people-friendly structure in order to remove those barriers, make them stand their own feet in our communities and freely participate in the social activities. This will eventually lead to build a society in which all people including the disabled people can use those facilities in a more convenient way. It is almost impossible for the disabled people to safely and conveniently access to and use facilities and equipments and freely move to their desired places, without any help from others in Korea. Even though, there are currently many disabled people-related convenience facilities, they have been independently built without a connection with other facilities and buildings, thus not greatly useful. Even when convenience facilities have been built, mostly they are superficially set up; therefore, in many cases, the disabled peOple cannot use those facilities. In this. research, I tried a new concept of mobile wheelchair lift design, which the disabled people can operate without restrictions, when using the public facilities. The key to this research was to develop the existing import-oriented simple functional products to a new system with functional safety and high quality orientation. Also, this research aimed at bringing an. import substitution effect, as well as preempting the mobile wheelchair lift market by advancing into overseas markets through application of new image designs in the field of disabled people aid equipments.

  • PDF

Impacts of R&D and Smallness of Scale on the Total Factor Productivity by Industry (R&D와 규모의 영세성이 산업별 총요소생산성에 미치는 영향)

  • Kim, Jung-Hwan;Lee, Dong-Ki;Lee, Bu-Hyung;Joo, Won
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.2 no.4
    • /
    • pp.71-102
    • /
    • 2007
  • There were many comprehensive analyses conducted within the existing research activities wherein factors affecting technology progress including investment in R&D vis-${\Box}$-vis their influences act as the determinants of TFP. Note, however, that there were few comprehensive analysis in the industrial research performed regarding the impact of the economy of scale as it affects TFP; most of these research studies dealt with the analysis of the non -parametric Malmquist productivity index or used the stochastic frontier production function models. No comprehensive analysis on the impacts of individual independent variables affecting TFP was performed. Therefore, this study obtained the TFP increase rate of each industry by analyzing the factors of the existing growth accounting equation and comprehensively analyzed the TFP determinants by constructing a comprehensive analysis model considering the investment in R&D and economy of scale (smallness by industry) as the influencers of TFP by industry. First, for the TFP increase rate of the 15 industries as a whole, the annual average increase rate for 1993${\sim}$ 1997 was approximately 3.8% only; during 1999${\sim}$ 2000 following the foreign exchange crisis, however, the annual increase rate rose to approximately 7.8%. By industry, the annual average increase rate of TFP between 1993 and 2000 stood at 11.6%, the highest in the electrical and electronic equipment manufacturing business and IT manufacturing sector. In contrast, a -0.4% increase rate was recorded in the furniture and other product manufacturing sectors. In the case of the service industry, the TFP increase rate was 7.3% in the transportation, warehousing, and communication sectors. This is much higher than the 2.9% posted in the electricity, water, and gas sectors and -3.7% recorded in the wholesale, food, and hotel businesses. The results of the comprehensive analysis conducted on the determinants of TFP showed that the correlations between R&D and TFP in general were positive (+) correlations whose significance has yet to be validated; in the model where the self-employed and unpaid family workers were used as proxy variables indicating the smallness of industry out of the total number of workers, however, significant negative (-) correlations were noted. On the other hand, the estimation factors of variables surrogating the smallness of scale in each industry showed that a consistently high "smallness of scale" in an industry means a decrease in the increase rate of TFP in the same industry.

  • PDF

Market Structure Analysis of Automobile Market in U.S.A (미국자동차시장의 구조분석)

  • Choi, In-Hye;Lee, Seo-Goo;Yi, Seong-Keun
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.1
    • /
    • pp.141-156
    • /
    • 2008
  • Market structure analysis is a very useful tool to analyze the competition boundary of the brand or the company. But most of the studies in market structure analysis, the concern lies in nondurable goods such as candies, soft drink and etc. because of the their availability of the data. In the field of durable goods, the limitation of the data availability and the repurchase time period constrain the study. In the analysis of the automobile market, those of views might be more persuasive. The purpose of this study is to analyze the structure of automobile market based on some idea suggested by prior studies. Usually the buyers of the automobile tend to buy upper tier when they buy in the next time. That kind of behavior make it impossible to analyze the structure of automobile market under the level of automobile model. For that reason I tried to analyze the market structure in the brand or company level. In this study, consideration data was used for market structure analysis. The reasons why we used the consideration data are summarized as following. Firstly, as the repurchase time cycle is too long, brand switching data which is used for the market analysis of nondurable good is not avaliable. Secondly, as we mentioned, the buyers of the automobile tend to buy upper tier when they buy in the next time. We used survey data collected in the U.S.A. market in the year of 2005 through questionaire. The sample size was 8,291. The number of brand analyzed in this study was 9 among 37 which was being sold in U.S.A. market. Their market share was around 50%. The brands considered were BMW, Chevrolet, Chrysler, Dodge, Ford, Honda, Mercedes, and Toyota. �� ratio was derived from frequency of the consideration set. Actually the frequency is different from the brand switch concept. In this study to compute the �� ratio, the frequency of the consideration set was used like a frequency of brand switch for convenience. The study can be divided into 2 steps. The first step is to build hypothetical market structures. The second step is to choose the best structure based on the hypothetical market structures, Usually logit analysis is used for the choice best structure. In this study we built 3 hypothetical market structure. They are type-cost, cost-type, and unstructured. We classified the automobile into 5 types, sedan, SUV(Sport Utility Vehicle), Pickup, Mini Van, and Full-size Van. As for purchasing cost, we classified it 2 groups based on the median value. The median value was $28,800. To decide best structure among them, maximum likelihood test was used. Resulting from market structure analysis, we find that the automobile market of USA is hierarchically structured in the form of 'automobile type - purchasing cost'. That is, result showed that automobile buyers considered function or usage first and purchasing cost next. This study has some limitations in the analysis level and variable selection. First, in this study only type of the automobile and purchasing cost were as attributes considered for purchase. Considering other attributes is very needful. Because of the attributes considered, only 3 hypothetical structure could be analyzed. Second, due to the data, brand level analysis was tried. But model level analysis would be better because automobile buyers consider model not brand. To conduct model level study more cases should be obtained. That is for acquiring the better practical meaning, brand level analysis should be conducted when we consider the actual competition which occurred in the real market. Third, the variable selection for building nested logit model was very limited to some avaliable data. In spite of those limitations, the importance of this study lies in the trial of market structure analysis of durable good.

  • PDF

Selective Word Embedding for Sentence Classification by Considering Information Gain and Word Similarity (문장 분류를 위한 정보 이득 및 유사도에 따른 단어 제거와 선택적 단어 임베딩 방안)

  • Lee, Min Seok;Yang, Seok Woo;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.105-122
    • /
    • 2019
  • Dimensionality reduction is one of the methods to handle big data in text mining. For dimensionality reduction, we should consider the density of data, which has a significant influence on the performance of sentence classification. It requires lots of computations for data of higher dimensions. Eventually, it can cause lots of computational cost and overfitting in the model. Thus, the dimension reduction process is necessary to improve the performance of the model. Diverse methods have been proposed from only lessening the noise of data like misspelling or informal text to including semantic and syntactic information. On top of it, the expression and selection of the text features have impacts on the performance of the classifier for sentence classification, which is one of the fields of Natural Language Processing. The common goal of dimension reduction is to find latent space that is representative of raw data from observation space. Existing methods utilize various algorithms for dimensionality reduction, such as feature extraction and feature selection. In addition to these algorithms, word embeddings, learning low-dimensional vector space representations of words, that can capture semantic and syntactic information from data are also utilized. For improving performance, recent studies have suggested methods that the word dictionary is modified according to the positive and negative score of pre-defined words. The basic idea of this study is that similar words have similar vector representations. Once the feature selection algorithm selects the words that are not important, we thought the words that are similar to the selected words also have no impacts on sentence classification. This study proposes two ways to achieve more accurate classification that conduct selective word elimination under specific regulations and construct word embedding based on Word2Vec embedding. To select words having low importance from the text, we use information gain algorithm to measure the importance and cosine similarity to search for similar words. First, we eliminate words that have comparatively low information gain values from the raw text and form word embedding. Second, we select words additionally that are similar to the words that have a low level of information gain values and make word embedding. In the end, these filtered text and word embedding apply to the deep learning models; Convolutional Neural Network and Attention-Based Bidirectional LSTM. This study uses customer reviews on Kindle in Amazon.com, IMDB, and Yelp as datasets, and classify each data using the deep learning models. The reviews got more than five helpful votes, and the ratio of helpful votes was over 70% classified as helpful reviews. Also, Yelp only shows the number of helpful votes. We extracted 100,000 reviews which got more than five helpful votes using a random sampling method among 750,000 reviews. The minimal preprocessing was executed to each dataset, such as removing numbers and special characters from text data. To evaluate the proposed methods, we compared the performances of Word2Vec and GloVe word embeddings, which used all the words. We showed that one of the proposed methods is better than the embeddings with all the words. By removing unimportant words, we can get better performance. However, if we removed too many words, it showed that the performance was lowered. For future research, it is required to consider diverse ways of preprocessing and the in-depth analysis for the co-occurrence of words to measure similarity values among words. Also, we only applied the proposed method with Word2Vec. Other embedding methods such as GloVe, fastText, ELMo can be applied with the proposed methods, and it is possible to identify the possible combinations between word embedding methods and elimination methods.

Economic Impact of HEMOS-Cloud Services for M&S Support (M&S 지원을 위한 HEMOS-Cloud 서비스의 경제적 효과)

  • Jung, Dae Yong;Seo, Dong Woo;Hwang, Jae Soon;Park, Sung Uk;Kim, Myung Il
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.261-268
    • /
    • 2021
  • Cloud computing is a computing paradigm in which users can utilize computing resources in a pay-as-you-go manner. In a cloud system, resources can be dynamically scaled up and down to the user's on-demand so that the total cost of ownership can be reduced. The Modeling and Simulation (M&S) technology is a renowned simulation-based method to obtain engineering analysis and results through CAE software without actual experimental action. In general, M&S technology is utilized in Finite Element Analysis (FEA), Computational Fluid Dynamics (CFD), Multibody dynamics (MBD), and optimization fields. The work procedure through M&S is divided into pre-processing, analysis, and post-processing steps. The pre/post-processing are GPU-intensive job that consists of 3D modeling jobs via CAE software, whereas analysis is CPU or GPU intensive. Because a general-purpose desktop needs plenty of time to analyze complicated 3D models, CAE software requires a high-end CPU and GPU-based workstation that can work fluently. In other words, for executing M&S, it is absolutely required to utilize high-performance computing resources. To mitigate the cost issue from equipping such tremendous computing resources, we propose HEMOS-Cloud service, an integrated cloud and cluster computing environment. The HEMOS-Cloud service provides CAE software and computing resources to users who want to experience M&S in business sectors or academics. In this paper, the economic ripple effect of HEMOS-Cloud service was analyzed by using industry-related analysis. The estimated results of using the experts-guided coefficients are the production inducement effect of KRW 7.4 billion, the value-added effect of KRW 4.1 billion, and the employment-inducing effect of 50 persons per KRW 1 billion.

Landscape Object Classification and Attribute Information System for Standardizing Landscape BIM Library (조경 BIM 라이브러리 표준화를 위한 조경객체 및 속성정보 분류체계)

  • Kim, Bok-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.103-119
    • /
    • 2023
  • Since the Korean government has decided to apply the policy of BIM (Building Information Modeling) to the entire construction industry, it has experienced a positive trend in adoption and utilization. BIM can reduce workloads by building model objects into libraries that conform to standards and enable consistent quality, data integrity, and compatibility. In the domestic architecture, civil engineering, and the overseas landscape architecture sectors, many BIM library standardization studies have been conducted, and guidelines have been established based on them. Currently, basic research and attempts to introduce BIM are being made in Korean landscape architecture field, but the diffusion has been delayed due to difficulties in application. This can be addressed by enhancing the efficiency of BIM work using standardized libraries. Therefore, this study aims to provide a starting point for discussions and present a classification system for objects and attribute information that can be referred to when creating landscape libraries in practice. The standardization of landscape BIM library was explored from two directions: object classification and attribute information items. First, the Korean construction information classification system, product inventory classification system, landscape design and construction standards, and BIM object classification of the NLA (Norwegian Association of Landscape Architects) were referred to classify landscape objects. As a result, the objects were divided into 12 subcategories, including 'trees', 'shrubs', 'ground cover and others', 'outdoor installation', 'outdoor lighting facility', 'stairs and ramp', 'outdoor wall', 'outdoor structure', 'pavement', 'curb', 'irrigation', and 'drainage' under five major categories: 'landscape plant', 'landscape facility', 'landscape structure', 'landscape pavement', and 'irrigation and drainage'. Next, the attribute information for the objects was extracted and structured. To do this, the common attribute information items of the KBIMS (Korean BIM Standard) were included, and the object attribute information items that vary according to the type of objects were included by referring to the PDT (Product Data Template) of the LI (UK Landscape Institute). As a result, the common attributes included information on 'identification', 'distribution', 'classification', and 'manufacture and supply' information, while the object attributes included information on 'naming', 'specifications', 'installation or construction', 'performance', 'sustainability', and 'operations and maintenance'. The significance of this study lies in establishing the foundation for the introduction of landscape BIM through the standardization of library objects, which will enhance the efficiency of modeling tasks and improve the data consistency of BIM models across various disciplines in the construction industry.