• Title/Summary/Keyword: 제트 자유류 상호작용

Search Result 4, Processing Time 0.015 seconds

Numerical Investigation of the Lateral Jet Effect on the Aerodynamic Characteristics of the Missile: Part II. Freestream-Jet Angle Effect (측 추력 제트가 미사일의 공력특성에 미치는 영향에 관한 연구 : Part II. 자유류-제트 각 영향)

  • Min, Byung-Young;Lee, Jae-Woo;Byun, Yung-Hwan;Hyun, Jae-Soo;Kim, Sang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.27-34
    • /
    • 2004
  • A computational study on the supersonic flow around the lateral jet controlled missile has been performed. For this purpose a three dimensional Navier-Stokes computer code(AADL3D) has been developed and case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body for several parameters such as angles of attack, circumferential jet positions, and spouting jet angles. Missile surface is divided into four regions with respect to the center of gravity, and the normal force and moment distribution at each region are compared. The results show different behavior of the normal force and moment variation according to each parameter. Furthermore, it is shown that the pitching moment can be minimized through proper combination of each parameter.

Analysis of the Interaction Between Side Jet and Supersonic Free Stream Using K-factor (상호 작용 계수를 이용한 측추력 제트와 초음속 자유류 상호 작용에 관한 연구)

  • Kim, Min-Gyu;Lee, Kwang-Seop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.101-110
    • /
    • 2012
  • The side jet effects between jet flow and free-stream on a missile body were investigated by experimentally and numerically for modeling aerodynamic coefficients in pitch plane. K-factors for normal force and pitching moment were introduced to estimate the side jet effects. The main parameters of the jet interaction phenomena were angle of attack, jet pressure ratio, Mach number and jet bank angle. The K-factors for normal force coefficient and pitching moment coefficients in pitch plane were analysed.

A Study for Performance Enhancement of Side Jet using a Ramp (램프를 이용한 측 추력기 성능향상에 관한 연구)

  • Byun, Yung-Hwan;Bae, Ki-Joon;Schetz, J.A.;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.73-79
    • /
    • 2004
  • An experimental and computational study has been performed for investigation of the jet interaction in supersonic flow with a ramp located behind a sonic, lateral jet. The experimental techniques include schlieren, pressure taps, and Pressure Sensitive Paint. The numerical solver used in this study is AeroSoft's structured flow solver GASP Version 4.0. A Mach 4 crossflow with a pressure ratio of 532, and the 3D ramp was designed by parametric study using GASP. The results showed that the ramp located downstream of the jet decrese the nose-down pitching moment by 70% without a force loss.

PREDICTION OF THE ORIFICE DISCHARGE COEFFICIENT USING COMPUTATIONAL FLUIDS DYNAMICS (전산유동해석을 이용한 ORIFICE 방출 계수 예측)

  • Ok, H.;Kim, I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.147-150
    • /
    • 2006
  • Vent ports are installed on the walls of closed compartments of a launch vehicle to control the pressure drop in the compartments. The ports can be modelled as an orifice, and the accurate prediction of the discharge coefficient of an orifice is essential for the design of vent ports. Experimental methods have been used to determine the discharge coefficients for various shapes of orifices, and extensive databases are available. Wind tunnel tests have been also done to evaluate the effect of interaction between venting outflow and freestream for limited conditions. The goal of the present research is to predict the discharge coefficient of an orifice using CFD and evaluate the accuracy of the method, especially for the orifices exposed to the external flow.

  • PDF