• Title/Summary/Keyword: 제트

Search Result 1,810, Processing Time 0.028 seconds

Numerical Analysis on Screech Tone in a Supersonic Jet (숯계산에 의한 초음속 제트의 스크리티 톤 소음 해석)

  • Kim, Yong-Seok;Lee, Duck-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.94-100
    • /
    • 2007
  • An axisymmetric supersonic jet screech in the Mach number range from 1.07 to 1.2 is numerically simulated. The axisymmetric mode is the dominant screech mode for an axisymmetric jet. The Reynolds-averaged Navier-Stokes equations in the conjunction with a modified Spalart-Allmaras turbulence model are employed. A high resolution finite volume essentially non-oscillatory(ENO) schemes are used along with nonreflecting characteristic boundary conditions that are crucial to screech tone computations to accurately capture the sound waves, shock-cell structures and large-scale instability waves.

Instability analysis of gas injection into liquid (액상으로 분사되는 기체의 불안정성 해석)

  • Kim Hyung-Jun;Kwon Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.57-60
    • /
    • 2006
  • The instability analysis of submerged gas flow into liquid is studied, which assumes gas and liquid as viscous and irrotational. At low mass flow rate of gas, injected gas plume is collection of bubbles, and increase of gas flow rate makes plume as a jet. It is well known that the transition from bubbling to jetting occurs in the transonic region. But previous works neglect viscous effect of gas flow into liquid. This paper concerns about an application of viscous potential flow theory in cylindrical gas flow into liquid. The growth rate versus wave number and mach number is compared with various condition including inviscid and viscous flow.

  • PDF

An Experimental Study on Noise Phenomena in Supersonic Over-expanded Jet (초음속 과팽창 제트에서 발생하는 소음현상에 관한 실험적 연구)

  • Kweon Yong-Hun;Lim Chae-Min;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.337-340
    • /
    • 2006
  • The present paper describes an experimental work to investigate a transonic resonance in supersonic jet that is discharged from a convergent-divergent nozzle. When the nozzle m: at low nozzle pressure ratios, the shock occurs within the divergent section of the nozzle. The transonic resonance of a jet flow is generated by an emission of strong acoustic tones due to the unsteadiness of the shock. A Schlieren optical system is used to visualize the supersonic jet flow In order to specify the flow resonance of a jet, acoustic measurements are performed to obtain noise spectra. The acoustic characteristics of transonic resonace are compared with those of screech tones. The results obtained show that unlike screech frequency, the transonic reso- nace frequency somewhat increases with increasing the nozzle pressure ratio.

  • PDF

Freejet 타입 램제트 엔진 성능시험기 기본설계

  • Lee, Yang-Ji;Cha, Bong-Jun;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.65-78
    • /
    • 2004
  • This research was conducted for an acquisition of the ramjet engine test facility design technique which are concerned about freejet type test facility. In this research, we concentrated on the design technique and the construction technique of the vitiation air heater(VAH), test section, diffuser and ejector. Based on the operating modes of the basic test facility, ten operating modes in coordinates "Altitude-Mach number" was regenerated from Mach 2, Altitude 0km to Mach 5, Altitude 15km. In this operating modes, we calculated a design parameter of the supersonic nozzle, VAH, diffuser and ejector and acquired a technique for the ramjet test facility operating and repairing.

  • PDF

Numerical Simulation of the Screech Phenomenon in a Supersonic Jet (수치계산에 의한 초음속 제트에서의 스크리치 현상 해석)

  • Kim, Yong-Seok;Kim, Sung-Cho;Kim, Jeong-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.329-334
    • /
    • 2007
  • An axisymmetric supersonic jet screech in the Mach number range from 1.07 to 1.2 is numerically simulated. The axisymmetric mode is the dominant screech mode for an axisymmetric jet. The Reynolds-averaged Navier-Stokes equations in the conjunction with modified Spalart-Allmaras turbulence model are employed. A high resolution finite volume essentially non-oscillatory(ENO) schemes are used along with nonreflecting characteristic boundary conditions that are crucial to screech tone computations to accurately capture the sound waves, shock-cell structures, unsteady shock motions and large-scale instability waves.

  • PDF

플라즈마 제트의 혈액 응고 작용과 정량적인 측정 방법에 관한 연구

  • Kim, Yun-Jung;Lee, Won-Yeong;No, Jun-Hyeong;Hyeon, Seong-Bo;Eo, Yun;Park, Jin-Yeong;Lee, Yong-Min;Kim, Hui-Ju;Gwon, Gi-Cheong;Jo, Gwang-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.514-514
    • /
    • 2013
  • 플라즈마와 혈액의 상호작용 특성을 파악하기 위해 혈액응고 실험을 하였다. 생체에 적용 가능한 바이오 플라즈마 소스를 개발하여 다양한 조건으로 혈액에 플라즈마를 조사하였다. 혈액 응고의 정량적인 측정 방법으로 혈액의 저항을 측정하였다. 본 실험에 사용된 플라즈마 제트 장치는 의료용 바늘과 유리관, 외부 접지로 이루어져 있다. 플라즈마 제트 장치는 고전압 전극이 유리관 안에 위치하고 접지 전극이 유리관 바깥에 위치한다. 의료용 바늘을 통해 Ar gas를 주입하며, 약 2 kV의 전압을 인가하여 방전시켰다. 자연적으로 혈액을 응고시킨 경우, 칼슘 클로라이드를 첨가하여 응고시킨 경우, Ar gas 및 온풍을 단독적으로 불어넣은 경우, 그리고 플라즈마 제트를 조사한 경우로 나누어 실험을 진행하였다. 두개의 떨어진 전극 사이에 일정량의 혈액을 배치시켜 저항을 측정하여 응고 정도를 파악하였다. 플라즈마 제트를 조사하였을 경우 아무것도 처리하지 않은 자연상태의 혈액보다 혈액이 응고되는 속도가 빠르게 나타났다. Ar gas와 온풍을 단독으로 불어넣어 준 경우와 혈액 표면이 응고되었으나, 약 20초가 지나면 다시 원래 상태의 혈액으로 돌아감을 확인하였다. 플라즈마 제트를 혈액에 조사했을 때는 혈액이 이전의 혈액 상태로 돌아가는 경향이 나타나지 않았다.

  • PDF

A Fundamental Study of the Supersonic Microjet Flow (초음속 마이크로 제트 유동에 관한 기초적 연구)

  • 정미선;김현섭;김희동;박종호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.63-70
    • /
    • 2002
  • Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed between 0.2 and 1.25 to obtain both the under- and over-expanded flows at the exit of the micronozzle. and Reynolds number Re is changed between 600 to 40000. For both laminar and turbulent microjet flows, sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results, two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

A Study of Supersonic Jets Impinging on Axisymmetric Cone (원뿔에 충돌하는 초음속 제트에 관한 연구)

  • Park,Jong-Ho;Lee,Taek-Sang;Kim,Yun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.26-31
    • /
    • 2003
  • In this paper, supersonic jets impinging on axisymmetric cone were investigated to obtain fundamental design data for jet deflector case of example being VTOL/STOL or rocket launch. It was of interest to study flow phenomena such as shock interactions and separation induced by shear layer. Experiments were conducted to obtain schlieren flow visualization and measurement of surface pressure. Numerical results are compared with the experimental result. The dominant feature of the flow is the shock pattern induced by the interaction between the cone shock and the barrel shock. This pattern can take a wide variety of forms depending on the structure of the free jet and strongly influences the form of the surface pressure distributions.

Thrust Vectoring Control by Injection of Secondary Jets Inside Supersonic Nozzle (초음속 노즐 내부 이차제트 분출을 통한 추력편향 제어에 관한 연구)

  • Yoon, Sang-Hoon;Kim, Kuk-Jin;Min, Seong-Kyu;Lee, Yeol;Chun, Dong-Yeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.349-352
    • /
    • 2008
  • Thrust vectoring control by injection of secondary jet inside a convergent-divergent supersonic nozzle was studied by both experimentally and computationally. For various stagnation pressure of the secondary jet injected at a specific location(12 mm-downstream of throat) in the divergent section of nozzle, the characteristics of thrust vectoring were observed. Present numerical results were compared with previous investigators' results and Schlieren flow visualizations for the identical boundary conditions, and it showed a qualitatively good agreement. It was also noticed that the characteristics of thrust vectoring is strongly related to the reflection structure of oblique shock inside nozzle, ie., the pressure ratio of the secondary jet, SPR.

  • PDF

Preliminary Performance Analysis of a Dual Combustion Ramjet Engine (이중연소 램제트 엔진의 예비 성능해석)

  • Byun, Jong-Ryul;Ahn, Joong-Ki;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.318-325
    • /
    • 2011
  • In order to understand the operation characteristics and major design parameters of a dual combustion ramjet engine, a fundamental analysis model based on gasdynamics and thermodynamic theories was established. The preliminary performance analysis was accomplished and the results clearly describe the intimate relationship between air inlets, gas generator, and supersonic combustor. The methodology presented provides a means for quantitatively determining the geometries of the gas generator and supersonic combustor and assessing the effects on performance of each of the engine components. Also the design results for a basic configuration were provided.

  • PDF