• Title/Summary/Keyword: 제트혼합

Search Result 167, Processing Time 0.024 seconds

NOx Formation Characteristics with Oxygen Enrichment in Nonpremixed Counterflow and Coflow Jet Flames (비예혼합 대향류 및 동축 제트화염에서 산소부화에 따른 NOx 생성특성)

  • Yoo, Byung-Hun;Hwang, Chul-Hong;Han, Ji-Woong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.169-174
    • /
    • 2004
  • The NOx emission characteristics with oxygen enrichment in nonpremixed counterflow and coflow jet flame of $CH_4$ fuel have been investigated numerically. A small amount of nitrogen is included in oxygen-enriched combustion, in order to consider the inevitable $N_2$ contamination by air infiltration. The results show that the initial increase of NO with increasing oxygen enrichment is due to increasing temperature and residence time, while its subsequent decrease above 75% oxygen is due to decreasing the consumption rate of nitrogen. When oxygen addition exceeds 30%, Thermal NO gradually becomes the dominant production pathway and Prompt NO becomes negative pathway for net NO production rate. It is also seen that Thermal NO plays an important role in NO reduction when strain rate increase in oxygen-enriched combustion. Finally, the results of EINOx with oxygen enrichment in coflow jet flame show the similar profile with those of conterflow flame. It is confirmed that, with leakage of 1% nitrogen in the oxidizer stream, the corresponding EINOx is eight times of that emitted from regular $CH_4$/Air flame.

  • PDF

Normal and Micro Gravity Experiments on Propagation Speed of Tribrachial Flame of Propane in Laminar Jets (정상 및 미소중력장에서 프로판 층류 제트 삼지 화염의 전파속도에 관한 실험적 연구)

  • Lee, J.;Won, S.H.;Jin, S.H.;Fujita, O.;Ito, K.;Chung, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.47-54
    • /
    • 2002
  • The propagation speed of tribrachial flame in laminar propane jets has been investigated experimentally under normal and micro gravity conditions. The displacement speed was found to vary nonlinearly with axial distance because flow velocity along stoichiometric contour was comparable to the propagation speed of tribrachial flame for the present experiment. Approximate solutions for velocity and concentration accounting density difference and virtual origins have been used in determining the propagation speeds of tribrachial flame. Under micro gravity condition, the results showed that propagation speed of tribrachial flame is largely affected by the mixture fraction gradients, in agreement with previous studies. The limiting maximum value. of propagation speeds under micro gravity conditions are in good agreement with the theoretical prediction, that is, the ratio of maximum propagation speed to the stoichiometric laminar burning velocity is proportional to the square root of the density ratio of unburned to burnt mixture.

  • PDF

Study of the Slot Film Cooling under Ramjet Combustor with Recirculation Zone (재순환 영역이 존재하는 램제트 연소실 슬롯 막냉각 연구)

  • Oh Min-Geun;Park Kwang-Hoon;Byun Hae-Won;Yu Man-Sun;Cho Hyung-Hee;Ham Hee-Cheol;Bae Joo-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.59-63
    • /
    • 2005
  • The experimental study has been conducted to investigate the effect of the recirculation zone on the multi-slot film cooling in the ramjet combustor. The recirculation zone which is generated by the protrusion tip on the entrance of the coolant flow path affects on the first slot. Velocity fields, dimensionless temperature fields and adiabatic film cooling effectiveness on the downstream wall of the slot exit are measured. The results show that the film cooling performance is rapidly decreased after the slot exit by the share layer and high turbulence intensity between separated flows and coolant flows.

  • PDF

A CFD ANALYSIS FOR THERMAL MIXING IN A SUBCOOLED WATER UNDER TRANSIENT STEAM DISCHARGE CONDITIONS (과도상태 증기제트 방출시 과냉각수조 내의 열혼합 해석)

  • Kang H.S.;Kim Y.S.;Chun H.G.;Song C.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.8-18
    • /
    • 2006
  • A CFD benchmark calculation for a steam blowdown test was performed for 30 seconds to develop the methodology of numerical analysis for the thermal mixing between steam and subcooled water. In the CFD analysis, the grid model simulating the sparger and the IRWST pool were developed by the axisymmetric condition and then the steam condensation phenomena by a direct contact was modelled by the so-called condensation region model. Thermal mixing phenomenon in the subcooled water tank was treated as an incompressible flow, a free surface flow between the air and the water, a turbulent flow, and a buoyancy flow. The comparison of the CFD results with the test data showed a good agreement as a whole, but a small temperature difference was locally found at some locations. The commercial CFD code of CFX4.4 together with the condensation region model can simulate the thermal mixing behavior reasonably well when a sufficient number of mesh distribution and a proper numerical method are adopted.

Characteristics of Air-assist Spray Injected into Cross-flow with Various Gas-liquid Ratio (횡단유동으로 분사하는 이유체노즐의 기체-액체비에 따른 분무특성)

  • Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Su;Lee, Hyo-Won;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.159-162
    • /
    • 2007
  • The characteristic of air-assist spray injected into subsonic crossflow were studied experimentally. External-mixing air assist injector of Orifice nozzle with L/d of 3 were tested with various air-liquid ratio. Shadowgraph photography was performed for spray visualization and trajectory of spray measurements. The detailed spray structure was characterized in terms of SMD, velocity, and volume flux, using PDPA. Experimental results indicate that penetration length was increased and spray distribution was accelerated by increasing air-liquid ratio.

  • PDF

A Study of Supersonic Twin Jet Impinging on a Plate (평판에 충돌하는 초음속 Twin 제트에 관한 연구)

  • Park, Soon-Yoong;Yoon, Sang-Ho;Baek, Seung-Cheol;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.508-513
    • /
    • 2003
  • Experiments are performed to investigate the detailed structure of underexpanded twin jet impinging on a perpendicular flat plate. The major parameters, such as nozzle operating pressure and nozzle spacing, are varied to create different jet flow fields resulted from the complicated interactions of the twin jets. From the surface pressure measurements and shadowgraphs taken by schlieren optical system, the jet structure is strongly dependent on the nozzle operation pressure and the spacing. The results obtained show that the closer nozzle spacing may induce to decrease the diameter of the Mach disk within the first shock cell in the underexpanded twin jet. With the increasing nozzle operating pressure and decreasing the nozzle spacing, a new shock wave appears at the entrainment region between the two jets, due to the enhancement of mixing effect of the both jets. The closer nozzle spacing makes the overall impinging pressure level higher, while severe pressure oscillation along the axis of symmetry. Furthermore it is recommended the wider spacing to obtain higher thrust under the present experimental conditions.

  • PDF

A Study on Steady-State Performance Simulation of Smart UAV Propulsion System (신개념 비행체 추진시스템의 정상상태 성능모사 기법 연구)

  • 공창덕;강명철;기자영;양수석;이창호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.38-44
    • /
    • 2003
  • In this study, a performance model of the smart UAV propulsion system with ducts, tip jets and variable main nozzle, which has flight capability of the rotary wing mode for the take-off/landing and low speed forward flight as well as the fixed wing mode for high speed forward flight, has been newly developed With the proposed model, steady-state performance analysis was performed at various flight modes such as rotary wing mode, fixed wing mode, compound ing mode and altitude as well as at flight speed conditions. In investigation of performance analysis. it was noted that the operational capability of the propulsion system was limited due to the duct losses depending on each flight mode, and the limitation with the altitude variation case had much greater than that with the flight speed variation case.

A Study on the Lift Flame Structure with Composition Ratios in Premixed Impinging Jet Flames of Syngas (H2/CO) (합성가스(H2/CO) 예혼합 충돌 제트화염에서 조성비에 따른 부상 화염구조에 관한 연구)

  • KIM, SEULGI;SIM, KEUNSEON;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.220-229
    • /
    • 2016
  • A numerical study on lifted flame structure in impinging jet geometry with syngas composition ratio was investigated. The numerical calculations including chemical kinetic analysis were conducted using SPIN application of the CHEMKIN Package with Davis-Mechanism. The flame temperature and velocity profiles were calculated at the steady state for one-dimensional stagnation flow geometry. Syngas mixture compositions were adjusted such as $H_2:CO=10:90(10P)$, 20 : 80 (20P), 30 : 70 (30P), 40 : 60 (40P), 50 : 50 (50P). As composition ratios are changed from 10P to 50P, the axial velocity and flame temperature increase because the contents of hydrogen that have faster burning velocity increase. This phenomenon is due to increase in good reactive radicals such as H, OH radical. As a result of active reactivity, the burning velocity is more faster and this is confirmed by numerical methods. Consequently, combustion reaction zone was moved to burner nozzle.

Effect of Orifice Diameter Ratio on Unlike Impinging Jet Mixing (액상 충돌 제트의 혼합에 대한 분사공 직경비의 영향)

  • Lee, S.W.;Cho, Y.H.;Yu, B.I.
    • Journal of ILASS-Korea
    • /
    • v.11 no.4
    • /
    • pp.220-227
    • /
    • 2006
  • Experimental studies has been conducted to investigate the effect of orifice diameter ratio on the mixing characteristics of the split element of doublet and triplet elements. The spray characteristics of non-reacting immiscible liquids have been investigated using a patternator. The local volume fraction is measured by use of mean value of each component. This volume measurement represents the mixing characteristics of the liquid, which affect the overall combustion efficiency. The ratio of the orifice diameter, ranging from 1 to 1.5, and that of the jet-momentum, ranging from 0.5 to 6.0, we used. The jet impinging behavior with use of various ratios exhibits substantially different mixing characteristics. Mixing efficiency is maximized when the jet-momentum ratio is increased; this behavior is particularly prominent when the orifice diameter ratio is greater than unity. The split of the triplet element yields better mixing characteristics and is more effective than that of the doublet element in regard to achieving high combustion efficiency. The optimum mixing factor for the triplet element is found to be 0.75, according to our measurement.

  • PDF

Mixing Zone Analysis on Outfall Plume considering Influence of Temperature Variation (수온 변화의 영향을 고려한 방류관 플룸의 혼합역 분석)

  • Kim Ji-Yeon;Lee Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.947-953
    • /
    • 2004
  • As a large scale port development in coastal waters proceeds step by step and populations in the vicinity of port are getting increased, the issue on 'how to dispose the treated municipal water and wastewater in harbor' brings peoples' concern. The submarine outfall system discharges the primary or secondary treated effluent at the coastline or in deep water, or between these two. The effluent, which has a density similar to that of fresh water, rises to the sea surface forming plume or jet, together with entraining the surrounding sea water and becomes very dilute. We intended in this paper to investigate the impact on dilution of effluent and the behavior of flume under the conditions of the seasonal and spatial temperature variations, which have not been noticeable in designing effective marine outfall system. To predict and analyze the behaviour and dilution characteristics of plume not just with the effluent temperature, but also with the seasonal variation of temperature of surround water, CORMIX( Cornell Mixing Zone Expert System)-GI have been applied. The results should be used with caution in evaluation the mixing zone characteristics of discharged water. We hope to help for the effective operation of outfall system, probable outfall design, protection of water quality, and warm water discharges from a power plant, etc.