• 제목/요약/키워드: 제트충돌

Search Result 326, Processing Time 0.022 seconds

Study of the Shock Structure of Supersonic, Dual, Coaxial, Jets (초음속 이중 동축 제트유동에서 발생하는 충격파 구조에 관한 연구)

  • 이권희;이준희;김희동;박종호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.94-101
    • /
    • 2001
  • The shock structure of dual coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure on the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number 2.0 and 3.0 are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 1.0 and 10.0, and the assistant jet ratio from 1.0 to 4.0. The results show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter.

  • PDF

Numerical Analysis on the Characteristics of Supersonic Steam Jet Impingement Load (초음속 증기제트의 충돌하중 특성에 대한 수치해석 연구)

  • Oh, Se-Hong;Choi, Dae Kyung;Park, Won Man;Kim, Won Tae;Chang, Yoon-Suk;Choi, Choengryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • Structures, systems and components of nuclear power plants should be able to maintain safety even in the event of design-basis accidents such as high-energy line breaks. The high-pressure steam jet ejected from the broken pipe may cause damage to the adjacent structures. The ANSI/ANS 58.2 code has been adopted as a technical standard for evaluating the jet impingement load. Recently, the U.S. NRC pointed out the non-conservativeness of the ANSI/ANS 58.2, because it does not take into account the blast wave effect, dynamic behavior of the jet, and oversimplifies the shape and load characteristics of the supersonic steam jet. Therefore, it is necessary to improve the evaluation method for the high-energy line break accident. In order to evaluate the behavior of supersonic steam jet, an appropriate numerical analysis technique considering compressible flow effect is needed. In this study, numerical analysis methodology for evaluating supersonic jet impingement load was developed and verified. In addition, the conservativeness of the ANSI/ANS 58.2 model was investigated using the numerical analysis methodology. It is estimated that the ANSI jet model does not sufficiently reflect the physical behavior of under-expanded supersonic steam jet and evaluates the jet impingement load lower than CFD analysis result at certain positions.

A Study on the Characteristics of Edgetones by High-Speed Plane Jets (고속 평면제트에 의한 쐐기음의 특성 연구)

  • Kwon, Young-Pil;Lee, Geun-Hee;Jang, Wook;Kim, Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.2100-2108
    • /
    • 2001
  • The impinging tones by high-speed plane jets are experimentally investigated to study the edgetone characteristics. Experiment used a slit nozzle and a wedge system to generate edgetones. The jet in the experiment is varied from low to high subsonic speed to obtain the effect of the speed on the frequency characteristics of impinging tones. The experimental data obtained previously fur edgetones and platetones by various nozzles are compared with the present edgetone data. And the condition of tone generation, the frequency ranges, the effective source point and the sound pressure level are compared and discussed. It is found that the jet speed has no diect influence on the impinging tone characteristics. Regardless of the jet speed, the effective source point is about a quarter wavelength downstream from the edge tip. With increase in jet speed, the influence of the nozzle configuration is decreased and the operating frequencies show good coincidences by normalized parameters based on the slit thickness.

An Experimental Study on Heat Transfer and Fluid Flow on the Semi-Circular Concave Surface Cooled by Jet Impingement (제트충돌냉각되는 반원 오목면에서 열전달 및 유체유동에 관한 실험적 연구)

  • Yu, Han-Seong;Yang, Geun-Yeong;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2991-3006
    • /
    • 1996
  • An experimental study of jet flow and heat transfer has been carried out for the jet impingement cooling on a semi-circular concave surface. For the jet impingement on the concave surface, three different regions-free jet region, stagnation region, and wall jet flow region-exist, and the distributions of mean velocity and fluctuating velocity for each region have been measured by Laser Doppler Velocimeter. Of particular interests are the effects of jet Reynolds number, the distance between the nozzle exit and cooling surface apex, and the distance from the stagnation point in the circumferential direction. The resulting characteristics of heat transfer at the stagnation point and the variation of heat transfer along the circumferential direction including the existence of secondary peak have been explained in conjunction with measured impinge jet flow.

Flow and Heat Transfer Characteristics of Impinging Single Circular Swirl Jet on Flat Plate (원형 선회류제트 충돌면에서의 유동 및 열전달 특성)

  • Jang, Jong-Chul;Jeon, Young-Woo;Park, Si-Woo;Chung, In-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.118-125
    • /
    • 2004
  • The experimental study on flow and heat transfer characteristics was conducted to investigate and to compare the performance of swirl jet by a twisted tape as a swirl generator with the performance of impinging single circular jet in fully developed flow tube. The effects of jet Reynolds number(Re=8700, 13800, 20000, 26500), dimensionless distance of nozzle-to-plate(H/d=2, 4, 6, 8) and swirl ratio(S=0.11, 0.23, 0.30) of the jet on the local and average Nusselt number have been examined. Measurements of local heat transfer rate and flow patterns on the jet impinging plate were used naphthalene sublimation technique and flow visualization technique respectively. Mean velocity and turbulence intensity of the jet along the centerline were measured. With a twisted tape in the nozzle exit, average Nusselt number at the around area of stagnation point were higher than those without the twisted tape at H/d=2, 4 and with the increase of Reynolds number. With a twisted tape in the nozzle, in the case of H/d=2, Re=26500 and S=0.11, maximum local Nusselt number at the region of y/d=0 and x/d=0.44 was obtained.

Characteristics of Turbulent Impinging and Wall Jet Flow for a Circular Nozzle with Various Exit Wall Thickness (다양한 벽면 두께를 갖는 원형 노즐에서 분사되는 난류 충돌 및 벽면 제트 유동장 특성)

  • Yang, Geun-Yeong;Yun, Sang-Heon;Son, Dong-Gi;Choe, Man-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.751-757
    • /
    • 2001
  • An experimental study of impinging jet-flow structure has been carried out for a fully developed single circular jet impingement cooling on a flat plate, and the effect of the wall thickness at nozzle exit edge is investigated. Impinging jet flow structures have been measured by Laser-Doppler Velocimeter to interpret the heat transfer results presented previously by Yoon et al.(sup)(10) The peaks of heat transfer rate are observed near the nozzle edge owing to the radial acceleration of jet flow when the nozzle locates close to the impingement plate. The growth of the velocity fluctuations in the wall jet flow is induced by the vortices which originate in the jet shear layer, and consequently the radial distribution of local Nusselt numbers has a secondary peak at the certain radial position. As a wall of circular pipe nozzle becomes thicker for small nozzle-to-target distance, the entrainment can be inhibited, consequently, the acceleration of wall jet flow is reduced and the heat transfer rate decreases.

An Experimental Study of Supersonic Underexpanded Jet Impinging on a Perpendicular Flat Plate (평판 위에 충돌하는 초음속 과소팽창 제트에 관한 실험적 연구)

  • 이택상;신완순;이정민;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.53-61
    • /
    • 1999
  • Impinging jets are observed when exhaust gases from missiles or V/STOL aircrafts impinge on the ground, flame deflector, ship deck, etc. The flow shows different patterns according to the nozzle geometry, nozzle-to-plate distance, and plate angle, for example. This paper describes experimental works on the phenomena (pressure distribution, occurrence of stagnation bubble, and so on.) when underexpanded supersonic jets impinge on a perpendicular flat plate using a supersonic cold-flow system, and compares the results with those obtained using a shock tunnel. The flow characteristics for the supersonic cold-flow system were also investigated. Surface pressure distribution of supersonic cold-flow system differed from that of shock tunnel because of water and temperature in the low-pressure chamber. Surface pressure distribution as to underexpanded ratio showed similar patterns together.

  • PDF

An Experimental Study of the Wall Temperature of the Supersonic Impinging Coaxial Jet Using an FLIR (적외선 카메라를 이용한 초음속 충돌 동축제트의 벽면 온도 측정)

  • Gwak, Jong-Ho;Kumar, V. R. Sanal;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1631-1636
    • /
    • 2004
  • The supersonic impinging jet has been extensively applied to rocket launching system, gas jet cutting control, gas turbine blade cooling, etc. In such applications, wall temperature of an object on which supersonic jet impinges is a very important factor to determine the performance and life of the device. However, wall temperature data of supersonic impinging jets are not enough to data. The present study describes an experimental work to measure the wall temperatures of a vertical flat plate on which supersonic, dual, coaxial jet impinges. An Infrared camera is employed to measure the wall temperature distribution on the impinging plate. The pressure ratio of the jet is varied to obtain the supersonic jets in the range of over-expanded to moderately under-expanded conditions at the exit of coaxial nozzle. The distance between the coaxial nozzle and the flat plate was also varied. The coaxial jet flows are visualized using a Shadow optical method. The results show that the wall temperature distribution of the impinging plate is strongly dependent on the jet pressure ratio and the distance between the nozzle and plate.

  • PDF

ANALYSIS OF HEAT TRANSFER OF INCLINED IMPINGING JETS ON A CONCAVE SURFACE (엇갈리게 기울어진 충돌제트들에 의한 오목면 상의 열전달 성능해석)

  • Heo, M.W.;Lee, K.D.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • Numerical analyses have been carried out to analyze the three-dimensional turbulent heat transfer by impingement jet on a concave surface with variation of geometric configurations. Three-dimensional Reynolds averaged Navier-stokes equations have been calculated using the shear stress transport turbulent model. The numerical results for heat transfer rate were validated in comparison with the experimental data. The distance between jet nozzles and angle of inclined jet nozzle were selected as the geometric variables. Area-averaged Nusselt numbers on concave surface are evaluated to find the characteristics of heat transfer with the two geometric variables. The heat transfer increases as the distance between jet nozzles increases, and the inclined impinging jets show much better heat transfer performance than the vertical impinging jet.

A Study on the Velocity Characteristics of the Spray Formed by Two Impinging Jets (충돌 제트로 형성되는 분무의 속도 특성에 대한 연구)

  • Choo, Yeon-Jun;Seo, Kwi-Hyun;Kang, Bo-Seon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.87-93
    • /
    • 2001
  • In this study, the velocity characteristics of liquid elements formed by two impinging jets is analysed using double pulse image capturing technique. For the droplets formed by low speed impinging jets, the droplet velocities are higher with smaller azimuthal and impingement angle. The maximum droplet velocities are about 25 % lower than jet velocity. With an increase of azimuthal angle, the shedding angles increases but remains lower than azimuthal angle. The velocities of ligaments formed by high speed impinging jets gradually decreases with an increase of azimuthal angle. The maximum ligament velocities are about 40 % lower than jet velocity. Higher impingement angles produce lower ligament velocities. The shedding angles of ligament almost increases with the same value of azimuthal angle, which implies that the moving direction of ligaments is radial from the origin as the impingement point.

  • PDF