• Title/Summary/Keyword: 제철

Search Result 543, Processing Time 0.025 seconds

The development of the MMI system for automating steel-making process (제철 공정 자동화를 위한 MMI 시스템 개발)

  • Lee, Dae-Sung;Kim, Yoon-Ha;Joo, Moon-Jab
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2469-2471
    • /
    • 2002
  • MMI 시스템은 제철 공정에서 발생되는 다양한 데이터를 조업자에게 쉽고 빠르게 전달하기 위해, real time operating system에서 동작하는 제철공정의 주된 제어 프로세스와 인터페이스 한다. 따라서 MMI 시스템은 제철 공정의 주된 제어 프로세스와 ethernet network을 통해 공유 데이터들을 통신하도록 개발되고, MMI 시스템은 M/S window operating system과 DDE(Dynamic Data Exchange) 라이브러리 환경을 기반으로 개발된다. 수 개의 MMI client PC와 1 개의 MMI server로 구성되는 MMI 시스템은 MMI client들 사이의 공유 데이터가 동기화될 수 있도록 최적 packet 양을 도출하고, 신뢰성 높은 데이터 전송을 위한 특별한 데이터 핸들링 방법을 사용한다. MMI 시스템은 GUI(Graphic User Interface)를 사용하여 조업자에게 친숙한 window 화면을 제공하므로, MMI 시스템의 화면 수정, 첨가 및 삭제가 비용 부담없이 용이하게 진행되므로, 기존 제철 공정에서 사용하던 OCP(Operating Control Panel)들이 MMI 시스템으로 대체되고 있다.

  • PDF

Study on the Shear Characteristics by using the Hot Mechanical Piercing during the Hot Stamping Process (열간 기계적 피어싱을 이용한 핫스탬핑 전단특성 연구)

  • K. J. Park;J. M. Park;J. Y. Kong;J. Y. Kim;S. C. Yoon;J. S. Hyun;Y. D. Jung
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.81-86
    • /
    • 2023
  • The hot stamping process is widely used for high strength of vehicle parts, with heating 900 ℃ or higher in a furnace and in-die quenching to achieve strength above 1.5 GPa of the quenchable boron alloyed steel 22MnB5. First of all, the hot stamping process consisted of heating, forming, quenching and trimming. In the trimming process case, the laser method has been conventionally adopted. For laser trimming process, it has the problems pertaining to low productivity and high cost while the hot stamping process, accordingly the trimming process need to investigate the research for alternative method. In order to overcome these issues, many research groups have studied the mechanical trim solution on the hot stamped parts at high temperature. In this study, the mechanical piercing was performed during the hot stamping process at the high temperature for overcome the disadvantages of laser cutting. Also, the process parameters such as piercing time after die closing, clearances of between die and punch were controlled for obtaining the reasonable shear characteristics.

A Provenance Study of Iron Archaeological Sites in the Gyeongsang Province: Petrographic and Geochemical Approaches (경상지역 제철유적의 산지추정 연구: 암석기재학 및 지화학적 접근)

  • Jaeguk Jo;Seojin Kim;Jiseon Han;Su Kyoung Kim;Dongbok Shin;Byeongmoon Kwak;Juhyun Hong;Byeongyong Yu;Jinah Lim
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.475-499
    • /
    • 2023
  • To infer the provenance of raw iron materials utilized in iron production at the archaeological sites in Gyeongsang province, petrographic and geochemical analyses were conducted for smelting samples and major iron ores sourced from ore deposits. The smelting samples excavated from various iron archaeological sites were classified into different types according to their refining processes, such as iron bloom, iron bloom slag, pig iron, pig iron slag, forging iron flake, smithery iron, iron flake, and arrowhead. These samples exhibited discernable differences in their mineralogical components and texture. The enrichments of major elements such as aluminum and calcium in silicate minerals of the residual slags and the high contents of trace elements such as nickel and copper in some iron-making relics reflect the characteristics of raw iron ores, and thus can be regarded as potential indicators for inferring the provenance of source materials. In particular, the compositional ranges of Pb-Sr isotope ratios for the iron smelting samples were classified into three categories: 1) those exhibiting similar ratios to those of the raw iron ores, 2) those enriched in strontium isotope ratio, and 3) those enriched in both lead and strontium isotope ratios. The observed distinct Pb-Sr isotope characteristics in the iron smelting samples suggest the potential contribution of specific additives being introduced during the high-temperature refining process. These results provide a new perspective on the interpretation of the provenance study of the iron archaeological samples in Gyeongsang province, particularly in terms of the potential contribution of additives on the refining process.

Proposals on How to Research Iron Manufacture Relics (제철유적 조사연구법 시론)

  • Kim, Kwon Il
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.3
    • /
    • pp.144-179
    • /
    • 2010
  • Investigation into iron manufacture relics has been active since 1970s, especially accelerated in 1990s across the country. Consideration of the importance of production site relics has lately attracted attention to iron manufacture relics. Methodological studies of the investigation into iron manufacture relics, however, were less made compared with those of the investigation into tomb, dwelling, or swampy place relics. It is because the process of iron manufacture is too complicated to understand and also requires professional knowledge of metal engineering. With the recognition of these problems this research is to form an opinion about how to excavate, to rearrange and classify, and to examine iron manufacture relics, based upon the understanding of the nature of iron, iron production process, and metal engineering features of related relics like slag, iron lumps and so on. This research classifies iron manufacture relics into seven types according to the production process; mining, smelting, refining, tempering, melting, steelmaking, and the others. Then it arranges methods to survey in each stage of field study, trial digging, and excavation. It also explains how to classify and examine excavated relics, what field of natural science to be used to know the features of relics, and what efforts have been made to reconstruct a furnace and what their problems were, making the best use of examples, drawings, and photos. It comes to the conclusion, in spite of the lack of in-depth discussion on application and development of various investigation methods, that iron manufacture relics can be classified according to the production process, that natural sciences should be applied to get comprehensive understanding of relics as well as archeological knowledge, and that efforts to reconstruct a furnace should be continued from the aspect of experimental archeology.

$NO_3^-$ Adsorption by Steel Wastes (제철 폐기물을 이용한 $NO_3^-$흡착제거)

  • 현재혁;정진홍
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.1-3
    • /
    • 1997
  • 질산염(NO$_3$)은 음전하를 띠고 있기 때문에 지하에서 제거되기 어려운 물질 중 하나이다. 특히, 매립지로부터 침출수로 유출될 경우 통제하기가 곤란하다. 본 연구에서는 제철폐기물로서 다량 발생하는 제강슬러지와 제강슬래그를 매립지 복토/차수재로 이용시 NO$_3$흡착 제거 가능성을 알아보기 위해 온도, pH, 초기농도를 변화시키는 회분식방법의 실험을 실시하였다. 온도와 PH는 낮을 때. 초기농도는 높을 때 높은 흡착제거 효율을 나타내었다.

  • PDF

포항제철 기술연구소와 미래의 제철 기술

  • 이주강;권영섭
    • ICROS
    • /
    • v.1 no.1
    • /
    • pp.39-45
    • /
    • 1995
  • 생산량의 증대, 품질의 균일화, 생산 원가의 절감, 조업인원의 합리화를 위한 기술개발경쟁에서 기술우위를 확보하는 것이 국경을 초월한 무한경쟁체제에서 포항제철소가 국제경쟁력을 확보할 수 있으며, 포항제철 기술연구소가 앞으로 추진해 나아가야 할 방향일 것이다. 이를 위해서 우리 연구소, 특히 제어.계측.자동화 연구에 치중하고 있는 시스템연구팀은 공정 라인의 "no touch operation"을 구현하기 위해 artificial intelligence 등의 기술을 바탕으로 전 공정의 자동화, EIC 통합, 설비진단 자동화, 품질진단 자동화를 이루어 나가는 방향으로 나가고 있다.

  • PDF

매일 건강 밥상 - 삼복더위도 물리치는 7월의 제철음식

  • Park, Tae-Gyun
    • 건강소식
    • /
    • v.38 no.7
    • /
    • pp.34-37
    • /
    • 2014
  • 여름의 절정기인 7월의 다른 표현은 홍염(烘炎)이다. 화톳불이 이글거리는 듯한 더위란 뜻이다. 이 무렵 삼복(三伏)이 찾아온다. 7월의 제철음식으로 삼복더위를 물리치고 건강과 활력을 되찾아보자.

  • PDF

A Study on Iron-manufacture Method through Analysis of Ironware excavated from Byeokje, Goyang (고양 벽제 제철 유구 출토 철기의 분석을 통한 제철방법 연구)

  • Lim, Ju-Yeon;Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.28 no.4
    • /
    • pp.367-376
    • /
    • 2012
  • The ironware production technology is a measure to fathom the society's level of development in time. To understand iron-manufacure methods in the past, various investigations on the fine structures and additions of ironware remains and Iron ingot have been conducted in a way of natural science. This study metallurgically reclassifies remains excavated in iron-manufacture remains located in Beokje, Goyang, which are thought to be in time of Goryeo Dynasty, and draws an inference from the element analysis on the iron-manufacture and smelting technology. Iron ingot samples with a cast iron structure are divided into those with a white cast iron structure and those with a grey cast iron rich in P. The P content of grey cast iron appeared to be the result of adding a flux agent like lime, iron ingot and carbon steel iron ingot with a cast iron structure excavated in the area is regarded as pig iron which was made without a refining process. In this study it seems that two methods of making ironware were used in the area; one is the method of making ironware by pouring cast iron to the casting, and the other is the method of making carbon steel through the refinement of pig iron. It appears that highly even steel structure of carbon steel and a small amount of MnS inclusion are very similar with that of the modern steel to which Mn is artificially added. Nevertheless, these data alone cannot be used to determine the source of Mn in the carbon steel of the excavated from the iron-manufacture remains, which raises the need for further studies on the source and the possibility of carbon steel via the iron-manufacture process of cast iron.

An experimental archaeological study on the Baekjae iron smelting furnace and its production process (백제 제철로 및 제철기술의 복원을 위한 실험 고고학적 연구)

  • Lee, Eun Woo;Han, Ji Seon;Chae, Mi Hui;Kim, Eun Ji
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.4
    • /
    • pp.138-153
    • /
    • 2015
  • A Jincheon Seokjangri B23 furnace was reconstructed and iron smelting experiment was performed to investigate an ancient Baekjae iron production process. The work mainly described in this paper is the $1^{st}$ and $2^{nd}$ experiments among the several experiments carried out at Jungwon National Research Institute of Cultural Heritage. Iron ore(magnetite) and oak charcoal were used as a source and a foot bellow was used for air supply. Common results of the experiments are masses of iron, slag and charcoal formed in the furnace. Most iron lumps were formed nearby the tuyere rather than the area of tapping hole. Metallographic and chemical analysis shows that the iron lumps can be used for either forge or cast depending on their carbon content. Low Fe content and glassy texture of the inner slags suggest that the operation environment was quite reducing. Based on the results of the iron smelting experiments, measurements and analysis, various information was obtained regarding physical-chemical and metallurgical processes of the ancient iron smelting process. It is firmly believed that its undisclosed contents can be revealed more in depth with continual reconstitution experiments.

Characteristics of Gwanbuk-ri remains, Buyeo, inferred from the analysis of iron artifacts from District "Na" (부여 관북리 유적 "나" 지구 출토 제철유물의 분석을 통한 제철유적의 성격 추론)

  • Hong, Ju-Hyun;Han, Song-I;Kim, So-Jin;Han, Woo-Rim;Jo, Nam-Cheol
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.1
    • /
    • pp.4-17
    • /
    • 2017
  • In this research, the chemical composition of the iron artifacts from the late 6th-century to early 7thcentury Baekje remains in Gwanbuk-ri, Buyeo, specifically of the nine iron artifacts including slags, furnace walls and ingot iron excavated in the District "Na", were examined by observing their chemical compounds and microstructures. As a result, GB1 and GB6 were determined to be proto-reduction lumps whereas GB2, GB3, GB4 and GB5 were determined to be tempered slags, respectively. Also, he furnace wall GB7 were containing mullite and cristobalite, which are high temperature index minerals, The extrusion temperature was found out to be about $1200{\sim}1300^{\circ}C$, and it is most likely that the smelting temperature in the furnace was in that temperature range. GB8 ingot iron was determined to be a forged ironware. This ingot iron was an intermediary product for making ironware and its nonmetallic inclusions displayed similar microstructure and contents compared to the forged iron. Because of the existence of proto-reduction lumps and forged iron, the iron making facility located in District "Na" most likely had a small-scale iron making facility that handled iron bloom smelting and refining processes.