• Title/Summary/Keyword: 제작 공인

Search Result 6,278, Processing Time 0.038 seconds

Dye-sensitized Solar Cells Utilizing Core/Shell Structure Nanoparticle Fabrication and Deposition Process (코어/쉘 구조의 나노입자 제조 및 증착 공정을 활용한 염료감응 태양전지)

  • Jeong, Hongin;Yoo, Jhongryul;Park, Sungho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.111-117
    • /
    • 2019
  • This study proposed the fabrication and deposition of high purity crystalline $core-TiO_2/shell-Al_2O_3$ nanoparticles. Morphological properties of $core-TiO_2$ and coated $shell-Al_2O_3$ were confirmed by transmission electron microscope (TEM) and transmission electron microscope - energy dispersive spectroscopy (TEM-EDS). The electrical properties of the prepared $core-TiO_2/shell-Al_2O_3$ nanoparticles were evaluated by applying them to a working electrode of a Dye-Sensitized Solar Cell (DSSC). The particle size, growth rate and the main crystal structure of $core-TiO_2$ were analyzed through dynamic light scattering system (DLS), scanning electron microscope (SEM) and X-ray diffraction (XRD). The $core-TiO_2$, which has a particle size of 17.1 nm, a thin film thickness of $20.1{\mu}m$ and a main crystal structure of anatase, shows higher electrical efficiency than the conventional paste-based dye-sensitized solar cell (DSSC). In addition, the energy conversion efficiency (6.28%) of the dye-sensitized solar cell (DSSC) using the $core-TiO_2/shell-Al_2O_3$ nanoparticles selectively controlled to the working electrode is 26.1% higher than the energy conversion efficiency (4.99%) of the dye-sensitized solar cell (DSSC) using the conventional paste method.

Failure Mode and Failure Strength of Homogeneous Metals & Dissimilar Metals Bonded Single Lap-Shear Joints (동종금속 및 이종금속 단일 겹침 접착 시편의 파손모드 및 파손강도에 관한 연구)

  • Park, Beom Chul;Chun, Heoung-Jae;Park, Jong Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.1-5
    • /
    • 2019
  • In this paper, the experimental study and finite elements analysis were conducted on homogeneous and dissimilar metals single lap-shear bonded joints to investigate the factor that affect the joint failure load. It was found that factors which have the significant effects on the failure load of the joint was stiffness of the adherends. And from experimental results, it can be confirmed that the failure load increases linearly with overlap length increases. And the failure load of dissimilar metal joints is approximately 1KN(10~17%) larger than homogeneous metal joints. In order to confirm this phenomenon, the stress distribution and strain distribution of the specimens were analyzed through the finite element analysis. The difference between homogeneous metals joints and dissimilar metals joints is that stress and strain in adhesive are concentrated at the end of the overlap zone close to aluminium which has lower rigidity than aluminium in case of dissimilar metals joints. From high rigidity of steel, the stress concentration in bonds are decreased and it cause increase of the failure strength at dissimilar metal joints.

Structure Safety Analysis of Composite Lattice Structure with Inspection Window (복합재 격자구조물의 점검창 형상에 따른 구조안전성 해석)

  • Kim, Dong-geon;Bae, Ju-chan;Son, Jo-wha;Lee, Sang-woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.94-103
    • /
    • 2018
  • The purpose of designing composite lattice structure which applied to launching vehicle and tactical missile body is to minimize the thickness and weight for applied load. It is usually made of carbon fiber; fabricating with filament winding process over silicon mold, and provided with a window opening for inspection purpose if necessary. In this paper compression test is conducted without window opening in lattice structure and preliminary FEA is carried out to confirm its accuracy. And then FEA is performed for the case of window opening to evaluate the soundness and the safety factor of the structure. We have calculated for two kinds of window shape; rectangular one and hexagonal one. And we have calculated safety factors of the lattice structure with window opening in every case based on failure strength of rib and knot with varying the thickness and location of the window for hexagonal shape. Through our investigation, we have found out the followings; (1) the hexagonal shaped window is shown higher safety factor than rectangular one, (2) a window in a certain location is shown higher safety factor than others, (3) although the soundness of window structure is improved as increasing its thickness, a window of a certain thickness is shown higher safety factor than others because of stress concentration.

Design of Immersive Walking Interaction Using Deep Learning for Virtual Reality Experience Environment of Visually Impaired People (시각 장애인 가상현실 체험 환경을 위한 딥러닝을 활용한 몰입형 보행 상호작용 설계)

  • Oh, Jiseok;Bong, Changyun;Kim, Jinmo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.11-20
    • /
    • 2019
  • In this study, a novel virtual reality (VR) experience environment is proposed for enabling walking adaptation of visually impaired people. The core of proposed VR environment is based on immersive walking interactions and deep learning based braille blocks recognition. To provide a realistic walking experience from the perspective of visually impaired people, a tracker-based walking process is designed for determining the walking state by detecting marching in place, and a controller-based VR white cane is developed that serves as the walking assistance tool for visually impaired people. Additionally, a learning model is developed for conducting comprehensive decision-making by recognizing and responding to braille blocks situated on roads that are followed during the course of directions provided by the VR white cane. Based on the same, a VR application comprising an outdoor urban environment is designed for analyzing the VR walking environment experience. An experimental survey and performance analysis were also conducted for the participants. Obtained results corroborate that the proposed VR walking environment provides a presence of high-level walking experience from the perspective of visually impaired people. Furthermore, the results verify that the proposed learning algorithm and process can recognize braille blocks situated on sidewalks and roadways with high accuracy.

Effect of RTA Temperature on the Structural and Optical Properties of HfO2 Thin Films (급속 열처리 온도가 HfO2 박막의 구조적 및 광학적 특성에 미치는 효과)

  • Chung, Yeun-Gun;Joung, Yang-Hee;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.497-504
    • /
    • 2019
  • We fabricated $HfO_2$ thin films using RF magnetron sputtering method, and investigated structural and optical properties of $HfO_2$ thin films with RTA temperatures in $N_2$ ambient. $HfO_2$ thin films exhibited polycrystalline structure regardless of annealing process, FWHM of M (-111) showed reduction trend. The surface roughness showed the smallest of 3.454 nm at a annealing temperature of $600^{\circ}C$ in result of AFM. All $HfO_2$ thin films showed the transmittance of about 80% in visible light range. By fitting the refractive index from the transmittance and reflectance to the Sellmeir dispersion relation, we can predict the refractive index of the $HfO_2$ thin film according to the wavelength. The $HfO_2$ thin film annealed at $600^{\circ}C$ exhibited a high refractive index of 2.0223 (${\lambda}=632nm$) and an excellent packing factor of 0.963.

A Study on the the Follow-up Analysis and the Characteristics of Exhaust Gas by Standard Mode of Chassis Dynamometer of Gasoline (가솔린 차량의 차대동력계 표준모드 별 추종성 분석 및 배출가스 특성에 관한 연구)

  • Seo, Dong Choon;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.29-34
    • /
    • 2019
  • In this study, a gasoline test vehicle was evaluated for drive quality in emissions and fuel economy tests. The measurement results were compared with the manufacturer's suggested values to evaluate whether the tolerance ranges (fuel efficiency -5%, greenhouse gas +5%) were exceeded. We carried out tests with test subjects based on the SAE J2951 evaluation method. The test vehicle was a 2L gasoline vehicle. The drive following performance was found to increase under deliberate driving conditions and decreased in smooth driving conditions. As a result of the analysis of the drive following performance, the closer the value is to 1, the more accurate the driving is. (-) indicates harsh conditions, and (+) indicates gentle conditions. The basic data on the driver following between testers was obtained by analysis of the tests. The fuel efficiency correlation with the drive following performance within the target speed range of the fuel consumption mode. In the future, these measurement results can serve as key data for securing an exhaust gas database and fuel efficiency system for each measurement mode.

Borehole Elemental Concentration Logs: Theory, Current Trends and Next Level (암석구성성분검층: 원리, 연구동향 및 향후 과제)

  • Shin, Jehyun;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.149-159
    • /
    • 2019
  • Borehole elemental concentration logging, measuring neutron-induced gamma rays by inelastic scattering and neutron capture interactions between neutron and formation, delivers concentrations of the most common elements found in the minerals and fluids of subsurface formation. X-ray diffraction and X-ray fluorescence analysis from core samples are traditionally used to understand formation composition and mineralogy, but it represents only part of formations. Additionally, it is difficult to obtain elemental analysis over the whole intervals because of poor core recovery zones such as fractures or sand layers mainly responsible for groundwater flow. The development of borehole technique for in situ elemental analysis plays a key role in assessing subsurface environment. Although this technology has advanced consistently starting from conventional and unconventional resources evaluation, it has been considered as exclusive techniques of some major service company. As regards domestic research and development, it has still remained an unexplored field because of some barriers such as the deficiency of detailed information on tools and calibration facility for chemistry and mineralogy database. This article reviews the basic theory of spectroscopy measurements, system configuration, calibration facility, and current status. In addition, this article introduces the domestic researches and self-development status on borehole elemental concentration tools.

Development of Environmental Safety Real-Time Monitoring System by Living Area (생활권역별 환경안전 실시간 모니터링 시스템의 개발)

  • Lee, Joo-Hyun;Kim, Joo-Ho;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1088-1091
    • /
    • 2019
  • In this paper, a real-time monitoring system for environmental safety by living area is proposed. The proposed system is designed to measure radiation, fine dust and basic living information (temperature) using fixed and mobile measuring equipment, and constitutes a web database that stores data received from the equipment. It also develops web programs for displaying received data on PCs and mobile phones. The results of testing the performance of the system by an authorized testing agency showed that the radiation measurement range was measured in the range of $10{\mu}Sv/h$ to 10mSv/h, which is comparable to the world's highest level, and that the accuracy was measured between ${\pm}6.7$ and ${\pm}8.7$ percent of the measurement uncertainty was measured and normal operation at or below the international standard of ${\pm}15$ percent. In addition, the temperature test was conducted on a section of $-20^{\circ}C$ to $50^{\circ}C$ and normal operation was confirmed in response to the temperature change. Stability of radiated electromagnetic waves was ensured by a suitable judgment. The product's testing in general and high and low temperature environments for about four months after the prototype was made confirmed to be more than five years of durability. The measurement range and accuracy of fine dust sensors are compared with those of companies that measure the air environment, and the performance level is similar through the air quality measurement register.

Development Status of Technology Demonstration Model for Staged Combustion Cycle Engine (다단연소사이클 엔진 기술검증시제 개발 현황)

  • Kim, Chaehyoung;Lee, Jungho;Woo, Seongphil;So, Younseok;Yi, SeungJae;Lee, Kwang-Jin;Cho, Namkyung;Han, Yeoungmin;Kim, Jin-han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.104-111
    • /
    • 2019
  • Staged combustion cycle engines exhibit higher combustion performance compared with open cycle engines with a gas generator. An advanced research of the staged combustion cycle engine is going on for the next program following the KSLV-II program. Various experiments have been carried out for the technology demonstration model, TDM0A and TDM0B. The experiments on the combustion performance are aimed to understand the engine start condition and combustion characteristics. They also aim to develop the oxidizer-rich pre-burner and the combustor of the staged combustion cycle engine. The engine-shaped model, TDM1A is fabricated based on the experimental data. The combustion experiment of the TDM1A shows that the combustion pressure of the combustor is approximately 91 bar and the turbine rotation is approximately 28,00 rpm. The result is stable and satisfies the development requirements. The present paper reports on the development process and characteristics of engine models from TDM0A to TDM1A.

Experimental Study on the Ground Behavior around a Tunnel due to the Sidewall Deformation of Shallow Tunnel in Longitudinal Direction Excavated under the Slope (사면 하부지반에 종단 방향으로 굴착한 얕은 터널에서 측벽변형에 따른 터널 주변지반의 거동에 대한 실험적 연구)

  • Na, Yong Soo;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.21-30
    • /
    • 2019
  • While the study of the shallow tunnel has been mainly on the longitudinal load transfer and horizontal surface conditions, the study of the ground behavior of shallow tunnel under the slope is not sufficient. Therefore, in this study on the ground behavior around a tunnel due to the sidewall deformation of shallow tunnel under the slope that is excavated in longitudinal direction, a scale-down model test has been performed. The model tunnel has the dimension of 320 mm wide, 210 mm high and 55 mm long with enough material strength in aluminum and the model ground has the uniform ground conditions by 3 types of carbon rods. The model test has been performed with the variables of slopes and the cover depths by controlling the tunnel sidewall deformation, and the change of sidewall-load, load transfer, ground subsidence was monitored and analyzed. According to the increase of the slope, the maximum ground subsidence increased by 20~39% compared to the horizontal surface. The load ratio increased by maximum 20% in the tunnel crown and decreased in sidewall according to the surface slope. The load transfer shows maximum 128% of increase at the cover depth of 1.0D, while at the 1.5D cover depth it shows non-critical difference from horizontal surface. The slope has major effects on load transfer at the cover depth of 1.0D.