• Title/Summary/Keyword: 제방시설물

Search Result 75, Processing Time 0.032 seconds

Problems and Improvement Plans of River-Crossing Structures (하천횡단구조물의 문제점과 개선방안)

  • Kim, Ki Heung;Jung, Hye Ryeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.568-572
    • /
    • 2015
  • 하천횡단구조물은 하천을 횡단하는 시설물로, 크게 농업용수 취수용 보, 하도개수시 유속제어를 위한 낙차공 등을 들 수 있으며, 각각의 설치목적에 따라 그 형태와 설계제원(높이, 마루폭, 바닥보호공의 길이 등)이 다르나, 하천을 횡단하여 인공적인 구조물을 설치하는 형태는 동일하다. 따라서, 하천횡단구조물은 홍수시 배수위 영향으로 상류에 수위상승을 초래하여 하천의 치수 안전도를 저하시킬 뿐 아니라 직하류에서는 하상의 세굴에 의하여 호안 및 제방이 파괴되는 경우도 빈번하게 발생하고 있다. 또한, 하천횡단구조물은 생태계의 이동통로로서의 종적 연속성을 차단하는 것이다. 즉 하천을 따라 거슬러 올라가는 소하성 어종(anadromous species)이나 하천에서 바다로 내려가는 강하성 어종(catadromous species)과 같은 회유성 어종의 이동을 차단하기도 하며, 회유성 어종 이외에도 치어와 성어의 성장환경이 다른 어종의 경우는 상 중 하류를 옮겨가며 성장하는 어종의 이동도 차단하고 있다. 하천횡단구조물은 치 이수적 측면에서 반드시 필요한 하천구조물로서 치수, 생태 및 경관의 측면에서 여러 가지 문제점을 가지고 있으나 지금까지는 어도설치나 기능을 상실한 보의 철거 등 소극적인 수준에 머무르고 있기에 적극적인 개선대책이 필요한 실정이다. 따라서, 하천횡단구조물로 인한 문제점을 파악하기 위하여 경남의 20개 시 군 684개의 지방 하천에 설치된 7,725개의 하천횡단구조물에 대한 전수조사를 실시하고, 구조형식, 높이, 재료, 어도 설치 여부, 세굴현황 등을 분석하였다. 하천횡단구조물의 용도별 구성비는 보가 49%, 낙차공이 51%로 나타났으며, 구조형식은 콘크리트 구조가 72%, 콘크리트 석재 구조가 25%, 석재 구조가 3%인 것으로 분석되었다. 또한, 하천횡단구조물의 본체 높이별 구성비는 0.5m 이하가 14%, 0.5~1.0m가 35%, 1.0~1.5m가 34%, 1.5~2.0m가 10%, 2.0m 이상이 7%인 것으로 조사되었다. 어도 설치는 약 9%인 669개소에 설치되어 있었으나 대부분이 어류 등의 이용하는 생태통로 기능을 발휘할 수 없는 것으로 분석되었다. 따라서, 이러한 문제점을 해결하기 위해서 하폭, 하상고, 하상경사, 굴입정도, 유사량 등의 하도특성 및 용수이용 여건 등을 고려하여 유공관을 이용한 지하보, 석재 아치의 원리를 이용한 계단식 자연형 보/낙차공, 부분 램프 설치, 거석 놓기 등의 개선방안을 제안하였다. 제안된 개선방안은 하천복원 및 하천개수 사업 시행시에 반영하여 합리적인 하천복원 및 관리에 활용될 수 있을 것이다.

  • PDF

Flood Runoff Computation for Mountainous Small Basins using WMS Model (WMS 모형을 활용한 산지 소하천 유역의 유출량 산정)

  • Chang, Hyung Joon;Lee, Jung Young;Lee, Hyo Sang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.9-15
    • /
    • 2021
  • The frequency of flash floods in mountainous areas is increasing due to the abnormal weather that occurs increasingly in the recent, and it causes human and material damages is increasing. Various plans for disaster mitigation have been established, but artificial plans such as raising embankment and dredging operation are inappropriate for valleys and rivers in national parks that prioritize nature protection. In this study, flood risk assessment was conducted for Gyeryongsan National Park in Korea using the WMS (Watershed Modeling System)which is rainfall runoff model for valleys and rivers in the catchment. As the result, it was simulated that it is flooding in three sub-catchments (Jusukgol, Sutonggol, Dinghaksa) of a total in Gyeryongsan National Park when rainfall over the 50 years return period occurs, and it was confirmed that the risk of trails and facilities what visitors are using was high. The risk of trails in national parks was quantitatively presented through the results of this study, and we intend to present the safe management guidelines of national parks in the future.

Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs (미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합)

  • Hee-Jin Lee;Chanyang Sur;Jeongho Cho;Won-Ho Nam
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1135-1144
    • /
    • 2023
  • Many agricultural reservoirs in South Korea, constructed before 1970, have become aging facilities. The majority of small-scale reservoirs lack measurement systems to ascertain basic specifications and water levels, classifying them as unmeasured reservoirs. Furthermore, continuous sedimentation within the reservoirs and industrial development-induced water quality deterioration lead to reduced water supply capacity and changes in reservoir morphology. This study utilized Light Detection And Ranging (LiDAR) sensors, which provide elevation information and allow for the characterization of surface features, to construct high-resolution Digital Surface Model (DSM) and Digital Elevation Model (DEM) data of reservoir facilities. Additionally, bathymetric measurements based on multibeam echosounders were conducted to propose an updated approach for determining reservoir capacity. Drone-based LiDAR was employed to generate DSM and DEM data with a spatial resolution of 50 cm, enabling the display of elevations of hydraulic structures, such as embankments, spillways, and intake channels. Furthermore, using drone-based hyperspectral imagery, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated to detect water bodies and verify differences from existing reservoir boundaries. The constructed high-resolution DEM data were integrated with bathymetric measurements to create underwater contour maps, which were used to generate a Triangulated Irregular Network (TIN). The TIN was utilized to calculate the inundation area and volume of the reservoir, yielding results highly consistent with basic specifications. Considering areas that were not surveyed due to underwater vegetation, it is anticipated that this data will be valuable for future updates of reservoir capacity information.

Development and assessment of pre-release discharge technology for response to flood on deteriorated reservoirs dealing with abnormal weather events (이상기후대비 노후저수지 홍수 대응을 위한 사전방류 기술개발 및 평가)

  • Moon, Soojin;Jeong, Changsam;Choi, Byounghan;Kim, Seungwook;Jang, Daewon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.775-784
    • /
    • 2023
  • With the increasing trend of extreme rainfall that exceeds the design frequency of man-made structures due to extreme weather, it is necessary to review the safety of agricultural reservoirs designed in the past. However, there are no local government-managed reservoirs (13,685) that can be discharged in an emergency, except for reservoirs over a certain size under the jurisdiction of the Korea Rural Affairs Corporation. In this case, it is important to quickly deploy a mobile siphon to the site for preliminary discharge, and this study evaluated the applicability of a mobile siphon with a diameter of 200 mm, a minimum water level difference of 6 m, 420 (m2/h), and 10,000 (m2/day), which can perform both preliminary and emergency discharge functions, to the Yugum Reservoir in Gyeongju City. The test bed, Yugum Reservoir, is a facility that was completed in 1945 and has been in use for about 78 years. According to the hydrological stability analysis, the lowest height of the current dam crest section is 27.15 (EL.m), which is 0.29m lower than the reviewed flood level of 27.44 (EL.m), indicating that there is a possibility of lunar flow through the embankment, and the headroom is insufficient by 1.72 m, so it was reviewed as not securing hydrological safety. The water level-volume curve was arbitrarily derived because it was difficult to clearly establish the water level-flow relationship curve of the reservoir since the water level-flow measurement was not carried out regularly, and based on the derived curve, the algorithm for operating small and medium-sized old reservoirs was developed to consider the pre-discharge time, the amount of spillway discharge, and to predict the reservoir lunar flow time according to the flood volume by frequency, thereby securing evacuation time in advance and reducing the risk of collapse. Based on one row of 200 mm diameter mobile siphons, the optimal pre-discharge time to secure evacuation time (about 1 hour) while maintaining 80% of the upper limit water level (about 30,000 m2) during a 30-year flood was analyzed to be 12 hours earlier. If the pre-discharge technology utilizing siphons for small and medium-sized old reservoirs and the algorithm for reservoir operation are implemented in advance in case of abnormal weather and the decision-making of managers is supported, it is possible to secure the safety of residents in the risk area of reservoir collapse, resolve the anxiety of residents through the establishment of a support system for evacuating residents, and reduce risk factors by providing risk avoidance measures in the event of a reservoir risk situation.

Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel (긴구배수로 감세공의 Filp Bucket형 이용연구)

  • 김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2206-2217
    • /
    • 1971
  • Spillway and discharge channel of reservoirs require the Control of Large volume of water under high pressure. The energies at the downstream end of spillway or discharge channel are tremendous. Therefore, Some means of expending the energy of the high-velocity flow is required to prevent scour of the riverbed, minimize erosion, and prevent undermining structures or dam it self. This may be accomplished by Constructing an energy dissipator at the downstream end of spillway or discharge channel disigned to dissipated the excessive energy and establish safe flow Condition in the outlet channel. There are many types of energy dissipators, stilling basins are the most familar energy dissipator. In the stilling basin, most energies are dissipated by hydraulic jump. stilling basins have some length to cover hydraulic jump length. So stilling basins require much concrete works and high construction cost. Flip bucket type energy dissipators require less construction cost. If the streambed is composed of firm rock and it is certain that the scour will not progress upstream to the extent that the safety of the structure might be endangered, flip backet type energy dissipators are the most recommendable one. Following items are tested and studied with bucket radius, $R=7h_2$,(medium of $4h_2{\geqq}R{\geqq}10h_2$). 1. Allowable upstream channel slop of bucket. 2. Adequate bucket lip angle for good performance of flip bucket. Also followings are reviwed. 1. Scour by jet flow. 2. Negative pressure distribution and air movement below nappe flow. From the test and study, following results were obtained. 1. Upstream channel slope of bucket (S=H/L) should be 0.25<H/L<0.75 for good performance of flip bucket. 2. Adequated lip angle $30^{\circ}{\sim}40^{\circ}$ are more reliable than $20^{\circ}{\sim}30^{\circ}$ for the safety of structures.

  • PDF